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Dense Elastic Registration

In this exercise you will implement a dense elastic registration. Again, the data will be provided in the 

hdf5 file format and you can make use of vivi or Fiji to display the data. With the elastic registration in 

this exercise we have to minimize a functional of the form                                  

to find the optimal displacement vectors  at each control point , where  and N is the 

number of control points.  is the set of neighbors of point  and defines the edges between the 

control points in the control point graph.  denotes the similarity cost for point  with displacement

. The first term of the equation defines the data term (unary potentials). The second term is the  

smoothness term (pairwise potentials) and defines the smoothness cost of point  with displacement  

and neighboring point  with displacement .  is the weighting factor between the data term and the 

smoothness term. 

To minimize this functional we use Fast_PD [1]. In the individual tasks, we compute the dense control 

point graph, consisting of the set of control points (nodes) and the set of edges, the dense displacement 

hypotheses (labels) and the unary costs and the pairwise costs.

Note that in this exercise we assign a control point for each pixel in the image. That means, the number 

of control points N is equal to the number of image pixels, and the corresponding region  for each 

control point is just the pixel itself. 

To start, create your implementation file and call it “elastic.cc”.

1) Write a function 

void computeDenseControlPointGraph(  int nRows, int nCols,
blitz::Array< blitz::TinyVector<int,2>, 1>& nodes, 
blitz::Array< blitz::TinyVector<int,2>, 1>& edges)

that returns all control point coordinates (the coordinates of all pixels in the image), i.e. the nodes and 

all edges of the graph in a one-dimensional blitz::Array each. Here we use a 4-connected 

neighborhood, where all points that have the distance 1 are neighbors. Store the edges as index-pairs of 

neighboring control points. Use blitz::TinyVector<int,2> to store the point coordinates and edge index-

pairs in a one-dimensional blitz::Array of length nNodes and nEdges respectively. The shape of the 

control point grid is given as input by nRows and nCols.
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2) Write a function that generates a set of dense displacement hypotheses:

void computeDenseDisplacementHypotheses(int radius, blitz::Array< blitz::TinyVector<int,2>, 1>& labels)

The function returns the displacement hypotheses in the one-dimensional blitz::Array labels of length 

nLabels, use blitz::TinyVector<int,2> for each displacement hypothesis.

Call the two input images srcIm and trgIm. The estimated deformation field maps the source image 

onto the target image.

3) Evaluate the unary cost at each control point for each displacement hypothesis. Use the sum of 

squared differences (SSD) as similarity measure.

void computeUnaryCostsSSD( const blitz::Array< blitz::TinyVector<int,2>, 1>& nodes,
const blitz::Array< blitz::TinyVector<int,2>, 1>& labels,
const blitz::Array<float,2>& srcIm,
const blitz::Array<float,2>& trgIm,
blitz::Array< float, 2>& unaryCosts )

The output array unaryCosts has the shape nLabels x nNodes.

4) Evaluate the pairwise cost for each pair of displacement hypotheses. Use the l2 norm of the 

difference of two vectors to compute the pairwise costs.

void computePairwiseCostsL2( const blitz::Array< blitz::TinyVector<int,2>, 1>& labels,
blitz::Array< float, 2>& pairwiseCosts )

The output array pairwiseCosts has the shape nLabels x nLabels.

5) To transform the image with the estimated deformation field, you need to implement the function:

void warpImage( blitz::Array<float,2>& warpedBackTrgIm,
const blitz::Array<float,2>& trgIm,
const blitz::Array<blitz::TinyVector<int,2>,2 >& deformationField)

Similar to the previous exercises you perform an inverse transform to warp the target image back into 

the source image space. Note that you can directly use the forward deformation field. The computed 

displacements are integer values, so there is no need to interpolate, but you have to be careful at the 

image borders.

6) Download the code for Fast_PD [1] from the course page and read the notes in the file manual.txt to 

understand the interface of the solver.

The constructor of the CV_Fast_PD object has the following form:

CV_Fast_PD( int numpoints, int numlabels, Real *lcosts, int numpairs, int *pairs, Real *dist, int 
max_iters, Real *wcosts  )

The solver can be used as follows:

CV_Fast_PD pd( _numpoints, _numlabels, _lcosts, _numpairs, _pairs, _dist, max_iterations, _wcosts );
pd.run();

Note: You can directly use the generated  blitz::Array structures from above and hand them to the 

solver interface using the blitz::Array dataFirst() pointer.
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Here is an example of how to use the solver interface with the blitz::Array structures:

int max_iterations = 100;
blitz::Array<float, 1> edgeWeights(nEdges);
edgeWeights = 1.0;

float* _unaryCosts = reinterpret_cast<float*>(unaryCosts.dataFirst());
int* _edges  = reinterpret_cast<int*>(edges.dataFirst());
float* _pairwiseCosts   = reinterpret_cast<float*>(pairwiseCosts.dataFirst());
float* _edgeWeights = reinterpret_cast<float*>(edgeWeights.dataFirst());

CV_Fast_PD pd( nNodes, nLabels, _unaryCosts,
nEdges, _edges, _pairwiseCosts,
max_iterations, _edgeWeights );

pd.run();

blitz::Array<int, 1> optimalLabels(nNodes);
for( int i = 0; i < nNodes; ++i) {

optimalLabels(i)=pd._pinfo[i].label;
}

blitz::Array<blitz::TinyVector<int,2>,2 > deformationField(srcIm.shape());

for(int i=0;i < nNodes;++i){
deformationField(nodes(i)) = labels(optimalLabels(i));

}

Don't forget to multiply the pairwise costs with the weighting parameter  before passing them to the 

solver. Using edgeWeights each edge can be assigned an individual weight. Here, we set these individual

weights to 1.

Note: To use the solver in your implementation you have to add the *.cpp files to your compiler string. 

Your compiler string could look like

g++ -Wall -O3 -g elastic.cc  Fast_PD/graph.cpp Fast_PD/LinkedBlockList.cpp Fast_PD/maxflow.cpp -lblitz 
-o elastic -lhdf5
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Figure 2: Color coding of 
deformation direction. - T. 
Brox, Optical flow color 
coding.

Figure 1: Top row: Source image, target image, warped 
back target image. Bottom row: Deformation field color 
coding, target grid and warped back target grid after 
applying the deformation field.



7) Write a program elastic.cc, that performs an elastic registration. Use the two sets of toy data 

(square.h5/circle.h5) and (smile1.h5/smile2.h5). The images are of type blitz::Array<float,2> and 

stored at “/image”. To better understand how the deformation looks like, create a grid as in Figure 1 

and deform the image and the grid. Additionally, you can visualize the deformation field using the color

coding shown in Figure 2. You can use the function flowToImage from the additional material 

(FlowToImage.hh) to transform the deformation field into an RGB-image. Store your results in a hdf5 

file. Experiment with different values for .

8) Bonus task: For these datasets the similarity measure SSD was sufficient, but for real world data

e.g. recordings from microscope, X-Ray, MRT... it won't be. In those recordings changes in contrast

and illumination occur and other similarity measures are more suited. Implement the normalized cross 

correlation (NCC) as similarity measure:

void computeUnaryCostsNCC( const blitz::Array< blitz::TinyVector<int,2>, 1>& nodes,
const blitz::Array< blitz::TinyVector<int,2>, 1>& labels, const blitz::Array<float,2>& 

srcIm, const blitz::Array<float,2>& tgrIm,
blitz::Array< float, 2>& unaryCosts )

To compute the NCC you do not use single pixels, but small patches (6x6 pixel) that you compare: 

Hint: you have to be careful at the borders, because patches might shoot out of the image. One way to 

handle this is to do a zero padding around the images. 

9) Now apply your dense elastic registration to the zebrafish data (zebra1.h5/zebra2.h5). If you 

implemented the NCC, compare the results that you obtain with with SSD and NCC (you can also do 

this on the toy data).
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Figure 3: The two zebrafish datasets with different image 
qualities (gray-level image) and grid of patches (red). The 
patches for the evaluation of the NCC at point p with 
displacement d are highlighted in green.
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