Seminar: Content Based Image Retrieval

Ähnlichkeitsbestimmung von Bildern

Barbara Frank

Lehrstuhl für Mustererkennung und Bildverarbeitung

10. Januar 2005

Übersicht

- Einführung
- Bin-by-Bin Ähnlichkeitsmaße
- Cross-Bin Ähnlichkeitsmaße
- Regionen-basierte Ähnlichkeitsbestimmung

Problemstellung:

Vergleiche Merkmale verschiedener Bilder und bewerte deren Ähnlichkeit bzw. Distanz

hier: betrachte Verteilungen von Merkmalen

⇒ Farbhistogramme, Texturmerkmale (Gabor-features)

Gegeben: Feature-Vektoren h und k der Bilder H und K

Gesucht: Distanz d zwischen h und k

Wie kann man die Ähnlichkeit von Histogrammen bestimmen?

- Bin-by-Bin Ähnlichkeitsmaße
 - ⇒ Vergleiche jeweils paarweise Bins mit gleichem Index
 - ⇒ Kombiniere paarweise Distanz
- Cross-Bin Ähnlichkeitsmaße
 - ⇒ Vergleiche auch benachbarte Bins miteinander
 - ⇒ Ground-distance zwischen einzelnen Bins

Bin-by-Bin: Heuristische Distanzmaße

• Minkowsky-Form-Distance (\mathcal{L}_p - Norm)

$$d_{L_p}(H,K) = \left(\sum_i |h_i - k_i|^p\right)^{\frac{1}{p}}$$

- \mathcal{L}_1 : Manhattan-Distanz
- \mathcal{L}_2 : euklidische Distanz
- L_∞: maximale Differenz
- Histogram-Intersection

$$d_{\cap}(H,K) = 1 - \frac{\sum_{i}\min(h_{i},k_{i})}{\sum_{i}k_{i}}$$

Partial Matching

Bin-by-Bin: Nichtparametrische Test-Statistiken

• χ^2 -Test

$$d_{\chi^2}(H,K) = \sum_i \frac{(h_i - m_i)^2}{m_i}$$
 mit $m_i = \frac{h_i + k_i}{2}$

 Wahrscheinlichkeit, dass eine Verteilung zufällig aus der anderen gezogen wurde

Bin-by-Bin: Informationstheoretische Divergenzen

Kullback-Leibler-Divergence (KL)

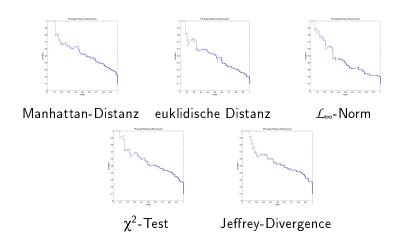
$$d_{KL}(H,K) = \sum_{i} h_{i} \log \frac{h_{i}}{k_{i}}$$

- wie effizient lässt sich eine Verteilung durch die andere codieren
- Jeffrey-Divergence(JD)

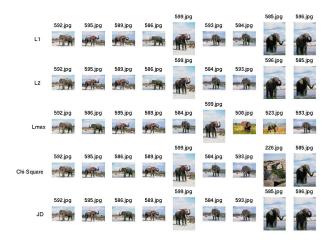
$$d_J(H, K) = \sum_i \left(h_i \log \frac{h_i}{m_i} + k_i \log \frac{k_i}{m_i} \right)$$

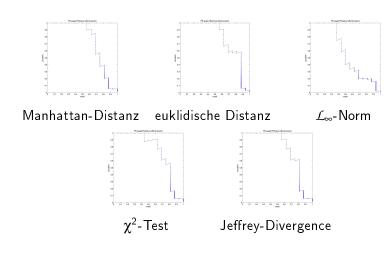
- empirisch aus KL abgeleitet
- numerisch stabiler, symmetrisch

Vergleich: Bin-by-Bin Ähnlichkeitsmaße

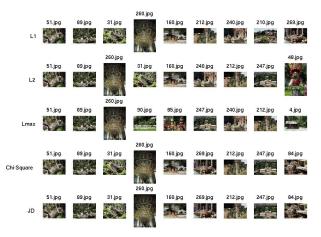


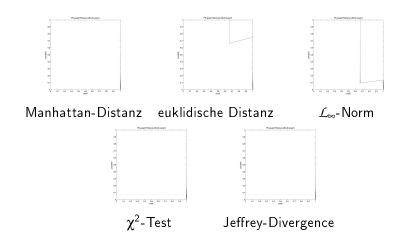
Vergleich: Bin-by-Bin Ähnlichkeitsmaße





Vergleich: Bin-by-Bin Ähnlichkeitsmaße





Cross-Bin:

Ähnlichkeitsmaße für kumulative Histogramme

Kolmogorov-Smirnov Distance (KS)

$$d_{KS}(H,K) = \max_{i}(|\hat{h}_{i} - \hat{k}_{i}|)$$

Match Distance (MD)

$$d_M(H, K) = \sum_i |\hat{h}_i - \hat{k}_i|$$

Cross-Bin: Ground-Distance Ähnlichkeitsmaße (1)

Quadratic-form Distance (QF)

$$d_A(H,K) = \sqrt{(h-k)^T A(h-k)}$$

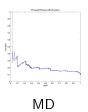
Ähnlichkeitsmatrix
$$A = \left[a_{ij}
ight]$$
 mit $a_{ij} = 1 - d_{ij}/d_{max}$

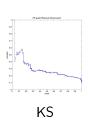
Vergleich: Cross-Bin Ähnlichkeitsmaße

300,jpg 303,jpg 38,jpg 81,jpg 83,jpg 32,jpg 339,jpg 998,jpg 18,jpg

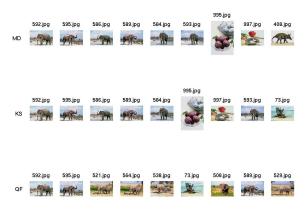
300,jpg 303,jpg 365,jpg 339,jpg 18,jpg 269,jpg 250,jpg 38,jpg 998,jpc (S

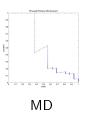
964.jpg 300.jpg 304.jpg 112.jpg 38.jpg 162.jpg 157.jpg 42.jpg 172.jpg

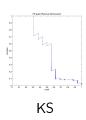




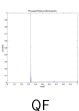
Vergleich: Cross-Bin Ähnlichkeitsmaße







Vergleich: Cross-Bin Ähnlichkeitsmaße



Verbesserungen

Nachteil: bisher betrachtete Distanzmaße entsprechen nicht immer wahrgenommener Distanz

- Bin-by-bin: Ähnlichkeit zwischen verschiedenen Bins wird nicht berücksichtigt
- Randverteilungen: Information über Korrelation zwischen verschiedenen Dimensionen geht verloren
- Quadratische Formen: nicht nur die ähnlichsten, sondern ALLE Bins werden verglichen
 - ⇒ Earth Mover's Distance

Cross-Bin: Ground-distance Ähnlichkeitsmaße

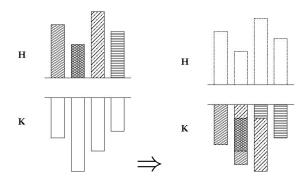
Earth Mover's Distance

$$d_{EMD}(H,K) = \frac{\sum_{i,j} g_{i,j} d_{i,j}}{\sum_{i,j} g_{i,j}}$$

<u>Idee</u>: Minimiere die Transportkosten, um eine Verteilung in die andere umzuwandeln mit Nebenbedingungen:

$$\begin{split} & \sum_{j} g_{i,j} \leq h_{i} \\ & \sum_{i} g_{i,j} \leq k_{i} \\ & \sum_{j} g_{i,j} = \min(h_{i}, k_{i}) \end{split}$$

Earth Mover's Distance: Beispiel



Earth Mover's Distance: Eigenschaften

- unterstützt adaptives Binning
- erlaubt "partial Matches"
- näher an wahrgenommener Ähnlichkeit
- Hohe Berechnungskomplexität

Regionen-basierte Ähnlichkeitsbestimmung

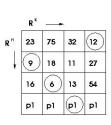
Gegeben: Segmentierte Bilder

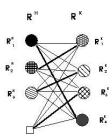
$$H = \{R_1^H, \dots, R_m^H\}, K = \{R_1^K, \dots, R_n^K\}$$

- Bestimme jeweils paarweise die Distanz der einzelnen Regionen $\mathbf{D} = [\delta_{i,j}]$ mit $\delta_{i,j} = d(R_i^H, R_i^K)$
- Finde ein optimales Matching aller Regionen
 ⇒ Assignment Problem
- Berechne die Distanz des ganzen Bildes

$$d_R(H,K) = rac{\sum \delta_{\mathsf{min}}(R_i^H,R_j^K)}{\mathsf{Anzahl}\ \mathsf{Regionen}}$$

Beispiel:





$$\Rightarrow d_R(H,K) = \frac{12+9+6+p1}{4}$$

Algorithmus

Anfragetypen

 contains: Suche nach Bildern, die ähnliche Regionen wie Anfragebild enthalten

$$\Rightarrow p1 = 0 \text{ und } p2 > 0$$

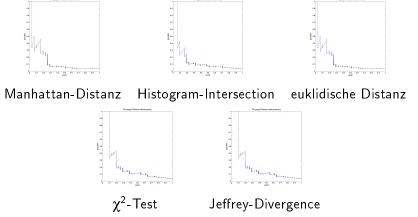
• **similarity**: Suche nach ähnlichen Bildern mit ähnlicher Anzahl von Regionen

$$\Rightarrow p1 = p2 > 0$$

 part-of: Suche nach Bildern, deren Regionen im Anfragebild enthalten sind

$$\Rightarrow p1 > 0 \text{ und } p2 = 0$$

Vergleich: RBIR - Ähnlichkeitsmaße



Ergebnisse:

reg749.mest

Ergebnisse:

Literatur

- J.Puzicha, J.M.Buhmann, Y.Rubner, C.Tomasi. Empirical Evaluation of Dissimilarity Measures for Color and Texture. In Proc. ICCV, Vol.2, p.1165, 1999.
- Y.Rubner, C. Tomasi, L.J. Guibas. The Earth Mover's Discance as a Metric for Image Retrieval. International Journal of Computer Vision, Vol. 40, 2000.
- Y.Rui, T.S. Huang, S. Chang. Image Retrieval: Current Techniques, Promising Directions and Open Issues. Journal of Visual Communication and Image Representation, Vol. 10, p.39-62, March, 1999.
- R.Weber, M.Mlivoncic. Efficient Region-Based Image Retrieval. In Proc. of CIKM 03, p.69, 2003.