5. Schnelle Algorithmen zur Signalund Bildverarbeitung

Aufwand einer allgemeinen Abbildung vom Vektorraum $\mathbb{R}^N \rightarrow \mathbb{R}^N$ (linear oder nichtlinear)

Für die Abbildung T werden N² zweistellige Verknüpfungen benötigt, wenn jeder Eingangswert in aller Allgemeinheit in die Berechnung eines jeden Ausgangswertes eingehen soll.

Dies wird z.B. in dem folgenden Berechnungsschema deutlich:

$$\tilde{x}_{j} = f_{j,N-1}(\cdots f_{j,3}(f_{j,2}(f_{j,1}(x_{0}, x_{1}), x_{2}), x_{3})\cdots, x_{N-1})$$

Z.B. Die lineare Vektorraumoperation:

$$\begin{bmatrix} \tilde{x}_{0} \\ \tilde{x}_{1} \\ \tilde{x}_{2} \\ \tilde{x}_{3} \end{bmatrix} = \begin{bmatrix} w_{00} & w_{01} & w_{02} & w_{03} \\ w_{10} & w_{11} & w_{12} & w_{13} \\ w_{20} & w_{21} & w_{22} & w_{23} \\ w_{30} & w_{31} & w_{32} & w_{33} \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

$$\tilde{x}_{0} = \underbrace{(\underbrace{(w_{00} \cdot x_{0} + w_{01} \cdot x_{1})}_{f_{01}(x_{0}, x_{1})} + w_{02} \cdot x_{2}) + w_{03} \cdot x_{3}}_{f_{01}(x_{0}, x_{1})}$$

Dabei wird eine Addition+Multiplikation als eine Operation gezählt.

H. Burkhardt, Institut für Informatik, Universität Freiburg

Eine Klasse schneller, Transformationen durch rekursive Faktorisierung der Transformation

Lässt sich die Transformation hingegen faktorisieren, d.h. kann man die Transformation der Dimension *N* auf zwei Transformationen der halben Dimension und einem Verschmelzungsschritt mit linearem Aufwand zurückführen, so erhält man:

$$\tilde{\mathbf{x}} = T(\mathbf{x}) = \begin{bmatrix} \widehat{f_1(\mathbf{x}_{1|2}, \mathbf{x}_{2|2})} \\ \widehat{f_2(\mathbf{x}_{1|2}, \mathbf{x}_{2|2})} \end{bmatrix} = \begin{bmatrix} \widetilde{\mathbf{x}_{1|2}^{(1)}} \\ \widetilde{\mathbf{x}_{2|2}^{(1)}} \end{bmatrix}$$

Dabei bedeutet $f(\mathbf{x}, \mathbf{y})$ die Anwendung der zweistelligen Verknüpfung f auf korrespondierende Elemente der beiden Vektoren \mathbf{x} und \mathbf{y} .

Nach mindestens (ld N) Schichten, geht jedes Eingangselement x_i in die Berechnung eines jeden Ausgangselementes \tilde{x}_i ein!

Rekursive Faktorisierung der Transformation T

Butterfly- oder In-Place-Signalflußgraph der schnellen Transformation *T*

Berechnungskomplexität

Durch die Faktorisierung ergibt sich ein Aufwand für $N=2^{n}$ von:

 $(1 \cdot N + 2 \cdot N / 2 + 4 \cdot N / 4 + \dots N / 2 \cdot 2) = N \cdot ld(N) = N \cdot n$ Operationen

D.h. ein Aufwandsgewinn von:

N^2	- N		
$\overline{N\log_2 N}$	$-\frac{1}{\log_2 N}$		

Für $N=2^{10}=1024$ ergibt sich bereits ein Gewinn von $1024/10\approx100$.

Laufzeitgewinn

N	N^2	N ld N	Gewinn: $\frac{N^2}{N \cdot \operatorname{ld} N} = \frac{N}{\operatorname{ld} N}$
100	10.000	664	15
500	250.00 0	4.483	55
1.000	106	104	100
$10^3 \cdot 10^3 = 10^6$	1012	$2 \cdot 10^{6}$	50.000

Konsequenzen der Faktorisierung

- 1. Schneller Algorithmus mit $(N \cdot \log_2 N)$ zweistelligen Verknüpfungen
- 2. In-Place-Algorithmus
- 3. Modulare Nutzung
 - Hardware: modularer Aufbau aus Bausteinen kleinerer Dimension
 - Software: modulare Nutzung kleinerer Teiltransformationen z.Bsp. bei beschränktem Haupspeicher
- 4. Rekursion sehr leistungsfähig für Beweisführung (vollständige Induktion)

Die schnelle Walsh-Hadamard-Transformation

Rekursive Definition von **H**: $\tilde{\mathbf{x}} = \mathbf{H}\mathbf{x}$ mit: $\mathbf{H}_N = \begin{bmatrix} \mathbf{H}_{N/2} & \mathbf{H}_{N/2} \\ \mathbf{H}_{N/2} & -\mathbf{H}_{N/2} \end{bmatrix}$

$$=> \quad \tilde{\mathbf{X}} = \begin{bmatrix} \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{H} & \mathbf{H} \\ \mathbf{H} & -\mathbf{H} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{H}\mathbf{a} + \mathbf{H}\mathbf{b} \\ \mathbf{H}\mathbf{a} - \mathbf{H}\mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{H}(\mathbf{a} + \mathbf{b}) \\ \mathbf{H}(\mathbf{a} - \mathbf{b}) \end{bmatrix} = \begin{bmatrix} \mathbf{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{H} \end{bmatrix} \begin{bmatrix} \mathbf{a} + \mathbf{b} \\ \mathbf{a} - \mathbf{b} \end{bmatrix}$$

Bei Fortsetzung der Rekursion
wird die H-Matrix auf Kosten
linearer Verschmelzungsschritte
auf Diagonalform reduziert!

 $t(N) = 2 \cdot t(N/2) + N \Rightarrow t(N) = O(N \operatorname{ld} N)$ Rekursion mit linearem Verschmelzungsaufwand (Folie 27 mit a = c = 2)

Homogener oder de Bruijn-Signalflußgraph der schnellen Transformation *T*

Übergang zum homogenen Graphen durch Permutation der Knoten

Übergang zum homogenen Graphen durch Permutation der Knoten

Übergang vom De Bruijn-Graph zum homogenen Graphen

Knoten verschieben!

Verbindungen werden mitgenommen

H. Burkhardt, Institut für Informatik, Universität Freiburg

Die Umwandlung des Butterfly- in den homogenen Graphen für eine allgemeine Basis-B Faktorisierung durch Permutation der Knoten

Die Verknüpfung f_r von Schicht *j* des Butterfly-Graphen wandert an die Stelle *r*', mit:

$$r'^{(j)} = \tau_j(r_B^{(0)}) = \tau_1(r_B^{(j-1)})$$

 τ_j bezeichnet *j* zyklische Verschiebungen nach links von *r*, dargestellt im Basis-B-Zahlensystem mit n-log_B N Stellen

Die Transformation T in APL

[0] Z←T X;N
[1] ∩ T REKURSIV (mit Bit-Reversal)
[2] →(1>N+(,ρZ+X)÷2)/0
[3] Z←,(T((N+X) F1 (N+X))),[1.5](T((N+X) F2 (N+X)))

 $\begin{bmatrix} 0 \end{bmatrix} Z \leftarrow T X; I; LN; NH \\ \begin{bmatrix} 1 \end{bmatrix} \land T ITERATIV \\ \begin{bmatrix} 2 \end{bmatrix} LN \leftarrow 1 + 2 \otimes NH \leftarrow (\circ Z \leftarrow X) \div 2 \\ \begin{bmatrix} 3 \end{bmatrix} I \leftarrow 1 \\ \begin{bmatrix} 4 \end{bmatrix} M: Z \leftarrow , ((NH + Z) F1 (NH + Z)), [1.5]((NH + Z) F2 (NH + Z)) \\ \begin{bmatrix} 5 \end{bmatrix} \rightarrow (LN \ge I \leftarrow I + 1)/M \end{bmatrix}$

Schnelle Fouriertransformation FFT

 $[0] Z \leftarrow FFTR X; N; W$

- [1] A FFT REKURSIVE DEFINITION
- [2] A MIT BIT-REVERSAL

 $[3] \rightarrow (1 > N \leftarrow (\rho Z \leftarrow X) \div 2) / 0$

 $[4] W \leftarrow CEXP \circ (-1 + \iota N) \div N$

 $[5] Z \leftarrow (FFTR(N + X) + (N + X)), [1 \cdot 5](FFTR W \times (N + X) - (N + X))$

 $[0] Z \leftarrow CEXP X$

[1] *Z*←[−]12°*X*

Schneller CT-in-place-Algorithmus (in Matlab-Notation)

function X = ict(X)

- % ICT Schneller ct-in-place-Algorithmus
- % X = ICT(X) berechnet allgemeinen schnellen Basis-2-Algorithmus.
- % Operatorwahl durch externe Funktionen f1(a,b) und f2(a,b)

n = length(X);% Dimension des Eingabevektors z.B. Walsh-Transf: ln = log2(n);np2 = n;function f1(a,b) = a+b;**for** i = 1:ln, % fuer jede Schicht function np = np2;f2(a,b) = a-b;np2 = np/2;**for** m =1:np2, % fuer jeden Knoten eines Teilbaumes **for** j1 = m:np:n, % fuer jeden Teilbaum j2 = j1 + np2;t = f2(X(j1), X(j2));X(j1) = f1(X(j1), X(j2));X(j2) = t;end end end

Erste kanonische Zerlegungsstrategie: separat auswerten und Verschmelzung am Schluss

Zweite kanonische Zerlegungsstrategie Verschmelzung zu Beginn, dann separat auswerten

Beispiel: Zwei Zerlegungsstrategien zum Sortieren von N Zahlen

- Zu I (Merge-Sort):
 - Trenne die Daten in zwei Häften (ungeordnet trennen)
 - Sortiere beide Hälften (entkoppelt bearbeiten)
 - Verschmelze die sortierten Hälften zu einem geordneten Datensatz der Länge N (geordnet zusammenführen)
- Zu II (Quicksort):
 - Separiere die Ausgangsdaten in zwei Hälften derart, dass alle Elemente der ersten Hälfte kleiner sind als die der zweiten Hälfte (geordnet trennen)
 - Sortiere beide Hälften (entkoppelt bearbeiten)
 - Erstelle ein Gesamtergebnis durch einfaches Aneinanderreihen der Teilergebnisse (einfach, da unabhängig voneinander zusammenfügen)

Rekursive Basis-3 Faktorisierung der Transformation *T*

$$\tilde{\mathbf{x}} = T(\mathbf{x}) = \begin{bmatrix} \overline{f_1(\mathbf{x}_{1|3}, \mathbf{x}_{2|3}, \mathbf{x}_{3|3})} \\ \overline{f_2(\mathbf{x}_{1|3}, \mathbf{x}_{2|3}, \mathbf{x}_{3|3})} \\ \overline{f_3(\mathbf{x}_{1|3}, \mathbf{x}_{2|3}, \mathbf{x}_{3|3})} \end{bmatrix}$$

Dabei bedeutet $f(\mathbf{x}, \mathbf{y}, \mathbf{z})$ die Anwendung der dreistelligen Verknüpfung f auf korrespondierende Elemete der drei Vektoren \mathbf{x}, \mathbf{y} und \mathbf{z} .

Die beiden kanonischen Verarbeitungsgraphen für eine Basis-3-Faktorisierung (Butterfly u. De Bruijn)

Nach mindestens $(\log_B N)$ Schichten, geht jedes Eingangselement x_i in die Berechnung eines jeden Ausgangselementes \tilde{x}_i ein!

H. Burkhardt, Institut für Informatik, Universität Freiburg

Anzahl der dyadischen Operationen bei einem Basis-B-Algorithmus

 $(B-1)N \cdot \log_B N$ dyadische Operationen

 $\log_B N$ - Schichten

 $N \cdot (B-1)$ - Operationen/Schicht

Zum Beispiel:

- <u>B=2, N=1024:</u> 10 Schichten 1024 Operationen/Schicht => 10 240 \approx 10⁴ Operationen
- $\underline{B=4, N=1024:}$ 5 Schichten 3.1024=3072 Operationen/Schicht => 15 360 Operationen
- <u>B=N, N=1024:</u> 1 Schicht N2 Operationen/Schicht => N²=1024²=1 048 576 ≈10⁶ Operationen

Analyse und Rechenregeln rekursiver Zerlegungen

Bei vollständiger Auflösung einer Rekursion erhält man die folgenden asymptotischen Analysen für die Berechnungskomplexität:

I. Konstanter Verschmelzungsaufwand d:

$$t(N) = \begin{cases} b & \text{für } N = 1 & \text{mit: } N = c^n \\ a \cdot t(\frac{N}{c}) + d & \text{für } N > 1 & \text{mit: } a, b > 0 \end{cases}$$

Asymptotische Komplexität:

$$t(N) = \begin{cases} O(N^{\log_{c} a}) & \text{für } a \neq 1\\ O(\log_{c} N) & \text{für } a = 1 \end{cases}$$

II. Linear wachsender Verschmelzungsaufwand $b \cdot N$:

$$t(N) = \begin{cases} b & \text{für } N = 1 & \text{mit: } N = c^n \\ a \cdot t(\frac{N}{c}) + b \cdot N & \text{für } N > 1 & \text{mit: } a, b > 0 \end{cases}$$

 (α)

Asymptotische Komplexität:

$$t(N) = \begin{cases} O(N) & \text{für } a < c \\ O(N \log_{c} N) & \text{für } a = c \\ O(N^{\log_{c} a}) & \text{für } a > c \end{cases}$$

Faktorisierung der DFT => FFT (Fast Fourier Transform)

$$f_1(a,b) = a+b$$
$$f_2(a,b) = (a-b)w^b$$

FFT nach dem Sande-Tukey-Algorithmus (decimation in frequency) Originaldaten in natürlicher Ordnung

FFT nach dem Sande-Tukey-Algorithmus

FFT nach dem Cooley-Tukey-Algorithmus (decimation in time) Ergebnisse in natürlicher Ordnung

FFT nach dem Cooley-Tukey-Algorithmus

FFT nach dem Sande-Tukey-Algorithmus (in Matlab-Notation)

```
function result = FFT(X, N)
% result = FFT(X, N)
% Eindimensionale FFT (Sande-Tukey-In-Place-Algorithmus)
LN = floor(log2(N));
NP2 = N;
for I=1:LN,
 NP = NP2;
 NP2 = NP/2;
 U = 1.0 + 0i;
 w = \exp(i * (-pi/NP2));
 for M-1:NP2,
  for J1=M:NP:N.
   J2 = J1 + NP2;
   T = X(J1) - X(J2);
   X(J1) = X(J1) + X(J2);
   X(J2) = T * U;
  end;
  U=U*w:
 end;
end;
result = BR(X,N);
```

Bit-reversal rekursiv

Gerade und ungerade Zahlen rekursiv entmischen (inverse perfect shuffle)

0	0	0	0	0	0	0
1	0	0	0	1	8	2
2	0	0	1	0	4	4
3	0	0	1	1	12	б
4	0	1	0	0	2	8
5	0	1	0	1	10	10
6	0	1	1	0	6	12
7	0	1	1	1	14	14
8	1	0	0	0	1	1
9	1	0	0	1	9	3
10	1	0	1	0	5	5
11	1	0	1	1	13	7
12	1	1	0	0	3	9
13	1	1	0	1	11	11
14	1	1	1	0	7	13
15	1	1	1	1	15	15
	-	-	Ŧ	-	10	10

Bit-reversal rekursiv

Gerade und ungerade Zahlen rekursiv entmischen (inverse perfect shuffle)

						I de la construcción de la constru
0	0	0	0	0	0	0 0
1	0	0	0	1	8	2 4
2	0	0	1	0	4	4 8
3	0	0	1	1	12	6 12
4	0	1	0	0	2	8 2
5	0	1	0	1	10	10 6
6	0	1	1	0	б	12 10
7	0	1	1	1	14	14 14
8	1	0	0	0	1	1 1
9	1	0	0	1	9	3 5
10	1	0	1	0	5	59
11	1	0	1	1	13	7 13
12	1	1	0	0	3	9 3
13	1	1	0	1	11	11 7
14	1	1	1	0	7	13 11
15	1	1	1	1	15	15 15

Bit-Reversal rekursiv

Gerade und ungerade Zahlen rekursiv entmischen (inverse perfect shuffle)

0	0	0	0	0	0	0	0	0
1	0	0	0	1	8	2	4	8
2	0	0	1	0	4	4	8	4
3	0	0	1	1	12	6	12	12
4	0	1	0	0	2	8	2	2
5	0	1	0	1	10	10	6	10
6	0	1	1	0	6	12	10	6
7	0	1	1	1	14	14	14	14
8	1	0	0	0	1	1	1	1
9	1	0	0	1	9	3	5	9
10	1	0	1	0	5	5	9	5
11	1	0	1	1	13	7	13	13
12	1	1	0	0	3	9	3	3
13	1	1	0	1	11	11	7	11
14	1	1	1	0	7	13	11	7
15	1	1	1	1	15	15	15	15

Bit-Reversal

function result = BR(X, N)% result - BR(X, N)% Fuehrt ein Bit-reversal auf dem Vektor X der Laenge N durch NH = N / 2;J = 1; for I=1:N-1, if (I < J), T = X(J);X(J) = X(I);X(I) = T;end; K = NH;while (K < J), J = J-K;K = K/2;end; J=J+K;end; result = X; return;

Paralleler FFT-Prozessor (N=8)

H. Burkhardt, Institut für Informatik, Universität Freiburg

Faktorisierung der Fourier-Matrix W

Rekursive Definition des Sande-Tukey-Algorithmus:

Die Permutation \mathbf{P}_{ug} ergibt sich aus der rekursiven Zerlegung des Bit-Reversal in der ersten Stufe.

Faktorisierung der Fourier-Matrix W

Die Fouriermatrix kann ähnlich wie die Walsh-Hadamard-Matrix faktorisiert werden. Aufbauend auf die rekursive Definition des Sande-Tukey-Algorithmus erhält man:

$$\tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \mathbf{P}_{br} \begin{bmatrix} \mathbf{F}_{ST} & \mathbf{F}_{ST} \\ \mathbf{F}_{ST} \mathbf{D} & -\mathbf{F}_{ST} \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \mathbf{P}_{ug} \begin{bmatrix} \mathbf{W} & \mathbf{W} \\ \mathbf{W} \mathbf{D} & -\mathbf{W} \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}$$
$$= \mathbf{P}_{ug} \begin{bmatrix} \mathbf{W}(\mathbf{a} + \mathbf{b}) \\ \mathbf{W} \mathbf{D}(\mathbf{a} - \mathbf{b}) \end{bmatrix} = \mathbf{P}_{ug} \begin{bmatrix} \mathbf{W} & \mathbf{0} \\ \mathbf{0} & \mathbf{W} \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{a} + \mathbf{b} \\ \mathbf{a} - \mathbf{b} \end{bmatrix}$$
mit:
$$\mathbf{D} = diag(w^0, w^1, \dots, w^{N/2-1}), \quad w = e^{j\frac{2\pi}{N}}$$

Statt einer voll besetzten Matrix erhält man eine ausgedünnte Blockdiagonalmatrix auf Kosten eines linearen Verschmelzungsaufwandes.

Fourier-Matrix hier in Bit-Reversal zeilenpermutierter Form (nicht frequenzgeordnet), ähnlich wie beim Unterschied Hadamard-/Walsh-Matrix!

Bei Fortsetzung der Rekursion wird die F-Matrix auf Kosten linearer Verschmelzungsschritte auf Diagonalform reduziert!

 $t(N) = 2 \cdot t(N/2) + N \Longrightarrow t(N) = O(N \operatorname{ld} N)$

Rekursion mit linearem Verschmelzungsaufwand

H. Burkhardt, Institut für Informatik, Universität Freiburg

Übergang von Cooley-Tukey zu Sande-Tukey-Algorithmus

Aus der rekursiven Definition von Cooley-Tukey und Sande-Tukey-Algorithmus ergibt sich:

Cooley-Tukey:
$$\tilde{\mathbf{x}} = \mathbf{W}\mathbf{x} = \begin{bmatrix} \mathbf{F}_{CT} & \mathbf{D}\mathbf{F}_{CT} \\ \mathbf{F}_{CT} & -\mathbf{D}\mathbf{F}_{CT} \end{bmatrix} \mathbf{P}_{br}\mathbf{x} = \mathbf{F}_{CT}\mathbf{P}_{br}\mathbf{x}$$

Sande-Tukey: $\tilde{\mathbf{x}} = \mathbf{W}\mathbf{x} = \mathbf{P}_{br}\begin{bmatrix} \mathbf{F}_{ST} & \mathbf{F}_{ST} \\ \mathbf{F}_{ST}\mathbf{D} & -\mathbf{F}_{ST}\mathbf{D} \end{bmatrix} \mathbf{x} = \mathbf{P}_{br}\mathbf{F}_{ST}\mathbf{x}$

Die Permutationsmatrix $\mathbf{P}_{br}\mathbf{x}$ realisiert die Bit-Reversal-Permutation und es gilt:

$$\mathbf{P}_{br}^{-1} = \mathbf{P}_{br}^{T} = \mathbf{P}_{b}$$

Vergleicht man die beiden rekursiven Definitionen, so erhält man unmittelbar:

Es gilt: $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$

 $\mathbf{F}_{ST} = \mathbf{P}_{br} \mathbf{W}$ BR-Permutation der Zeilen von \mathbf{W}

$$\mathbf{F}_{CT} = \mathbf{W}\mathbf{P}_{br}$$
 BR-Permutation der Spalten von W

$$\Rightarrow \mathbf{F}_{CT}^{T} = \left(\mathbf{W}\mathbf{P}_{br}\right)^{T} = \mathbf{P}_{br}^{T}\mathbf{W}^{T} = \mathbf{P}_{br}\mathbf{W} = \mathbf{F}_{ST}$$

Übergang von Cooley-Tukey zu Sande-Tukey-Algorithmus

Die frequenzgeordnete Fouriermatrix ergibt sich somit gemäß:

$$\mathbf{W} = \mathbf{P}_{br}\mathbf{F}_{ST} = \mathbf{F}_{CT}\mathbf{P}_{br}$$

und damit auch:

$$\mathbf{F}_{ST} = \mathbf{P}_{br}^T \mathbf{F}_{CT} \mathbf{P}_{br} = \mathbf{P}_{br} \mathbf{F}_{CT} \mathbf{P}_{br}$$

Und somit kann man beide Transformationen beschreiben als:

$$\widetilde{\mathbf{x}} = \mathbf{W}\mathbf{x} = \underbrace{\mathbf{P}_{br}\mathbf{F}_{ST}\mathbf{x}}_{\text{zuerst Transf.}} = \underbrace{\mathbf{F}_{CT}\mathbf{P}_{br}\mathbf{x}}_{\text{zuerst BR}}$$

Dabei bedeutet:

 \mathbf{FP}_{br} eine BR-Permutation der Spalten $\mathbf{P}_{br}\mathbf{F}$ eine BR-Permutation der Zeilen

Transformation zweier *reeller* Folgen **a** und **b** mit einer komplexen FFT

(z.B. zur schnellen Faltung zwischen a und b)

Man verteilt die beiden reellen Folgen **a** und **b** auf den Real- und Imaginärteil einer Folge **x** und transformiert komplex:

$$\mathbf{x}(n) = \mathbf{a}(n) + j\mathbf{b}(n) \stackrel{\text{Linearität}}{\Longrightarrow} \tilde{\mathbf{x}}(k) = \tilde{\mathbf{a}}(k) + j\tilde{\mathbf{b}}(k)$$

Aus der Tatsache, dass die Fouriertransformierte einer *reellen* Sequenz konj. symmetrisch und die einer imaginären Sequenz konj. antisymmetrisch ist folgt:

$$\tilde{\mathbf{a}}(k) = \tilde{\mathbf{x}}_{e}(k) = \frac{1}{2}(\tilde{\mathbf{x}}(k) + \tilde{\mathbf{x}}^{*}(-k)) \text{ konj. symmetrisch}$$
$$j\tilde{\mathbf{b}}(k) = \tilde{\mathbf{x}}_{o}(k) = \frac{1}{2}(\tilde{\mathbf{x}}(k) - \tilde{\mathbf{x}}^{*}(-k)) \text{ konj. antisymmetrisch}$$

Transformation von *reellen* Folgen der Länge 2N mit *einer* komplexen FFT der Länge N

Man verteilt die Werte mit geradem Index auf den Realteil und die ungeraden Elemente auf den Imaginärteil und verfährt so wie in der Folie zuvor angegeben:

$$\begin{array}{c} \mathbf{x}_{g} \Rightarrow \text{Realteil} \\ \mathbf{x}_{u} \Rightarrow \text{Imaginärteil} \end{array} \right\} \text{Transformation gemäß Folie zuvor}$$

Sodann erhält man unter Anwendung des Cooley-Tukey-Algorithmus:

$$\tilde{\mathbf{x}} = \begin{bmatrix} \tilde{\mathbf{x}}_{g} + \mathbf{d} \circ \tilde{\mathbf{x}}_{u} \\ \tilde{\mathbf{x}}_{g} - \mathbf{d} \circ \tilde{\mathbf{x}}_{u} \end{bmatrix}$$

mit:
$$\mathbf{d} = \begin{bmatrix} w^{0}, w^{1}, w^{2}, \dots, w^{N/2-1} \end{bmatrix}; \quad w = e^{-j2\pi/N}$$

Komplexität zweidimensionaler diskreter unitärer Transformationen

Gegeben: Bildmatrizen A der Dimension $N \times N = 2^n \times 2^n$.

1) Berechnung eines Fourierkoeffizenten über Innenprodukt z.B. bei Walsh-Transf.:

$$\widetilde{A}_{ij} = \langle \mathbf{A}, \mathbf{W}_{ij} \rangle \implies O(N^2)$$

Für alle Elemente von $\widetilde{\mathbf{A}} = \left\{ \widetilde{A}_{ij} \right\} \implies O(N^2 \cdot N^2) = O(N^4)$

2) Walsh-Transformation mit separierbarem Kern:

Damit bereits eine Reduktion auf $O(N^3)$!

3) Walsh-Transformation mit schneller 1D-Transformation:

$$\widetilde{\mathbf{A}} = \mathbf{W} \cdot \underbrace{\mathbf{A} \cdot \mathbf{W}}_{N \cdot (N \operatorname{Id} N) = N^2 \cdot \operatorname{Id} N}$$
Damit Reduktion auf $O(N^2 \cdot \operatorname{Id} N)$
$$\underbrace{\mathcal{A} \cdot \mathbf{W}}_{2N^2 \cdot \operatorname{Id} N}$$

Eindimensionale Realisierung der zweidimensionalen FFT

 $\dim(\mathbf{X}) = M \times N = 2^m \times 2^n = 2 \times 4$

2D - Bit - Reversal linearer Index : $i = k \cdot N + l$

Eindimensionale Realisierung der zweidimensionalen FFT

H. Burkhardt, Institut für Informatik, Universität Freiburg

Homogene Struktur zur eindimensionalen Realisierung der zweidimensionalen FFT

Falls alle Spalten linear gestapelt werden:

Ergibt sich eine Zeilen/Spalten-Transformation (zuerst Zeilen, dann Spalten)

Zahlenbeispiel

Bildmatrix:

 $\mathbf{A} = \begin{bmatrix} 1 & 12 & 18 & 13 & 2 & 17 & 19 & 20 \\ 16 & 5 & 17 & 4 & 20 & 14 & 7 & 16 \\ 5 & 12 & 11 & 7 & 2 & 12 & 4 & 8 \\ 19 & 3 & 10 & 2 & 8 & 12 & 16 & 8 \end{bmatrix}$

2D-DFT: (Fourier)

(6.88, -44.6) (10, 0)(6.88, 44.6) (340, 0)(11.1, -24.6)(-29,9)(-29, -9) (11.1, 24.6)(41,21) (-15.1,-26.5) (-20,-2) (15.5,-19) (-5,-7) (-24.9,-19.5) (-32,24)(8.46, 5.02) $\tilde{\mathbf{A}} =$ (-55,1) (-2.88, 18.3)(-7.12, 14.3) (-88, 0) (-7.12, -14.3) (-55, -1) (-2.88, -18.3)(-14,0)(41, -21) (8.46, -5.02)(-32, -24) (-24.9, 19.5) (-5, 7) (15.5, 19)(-20, 2)(-15.1, 26.5) $\begin{bmatrix} 340 & 11.1 & -29 & 6.88 & 10 & 6.88 & -29 & 11.1 \\ 41 & -15.1 & -20 & 15.5 & -5 & -24.9 & -32 & 8.46 \\ -14 & -2.88 & -55 & -7.12 & -88 & -7.12 & -55 & -2.88 \\ 41 & 8.46 & -32 & -24.9 & -5 & 15.5 & -20 & -15.1 \end{bmatrix} + j \begin{bmatrix} 0 & -24.6 & 9 & -44.6 & 0 & 44.6 & -9 & 24.6 \\ 21 & -26.5 & -2 & -19 & -7 & -19.5 & 24 & 5.02 \\ 0 & 18.3 & 1 & 14.3 & 0 & -14.3 & -1 & -18.3 \\ -21 & -5.02 & -24 & 19.5 & 7 & 19 & 2 & 26.5 \end{bmatrix}$ =

2D-DWT:
(Walsh)
$$\tilde{\mathbf{A}} = \begin{bmatrix} 340 & -30 & 2 & -20 & -38 & -4 & 68 & 10 \\ 62 & -28 & -20 & -34 & 4 & -34 & 6 & -12 \\ 20 & -18 & 30 & -44 & -30 & 40 & -8 & 2 \\ -14 & 20 & -4 & -54 & -56 & -10 & -26 & -88 \end{bmatrix}$$

Zusätzliche Anmerkungen zu FFT-Algorithmen

- Unter zusätzlicher Ausnutzung von Symmetrien der Exponentialfunktion ergeben sich schnelle Basis-4 und Basis-8 Algorithmen, welche weniger Multiplikationen auf Kosten zusätzlicher Additionen enthalten.
- Es existieren auch Prime-FFT-Algorithmen für Primzahldimensionen (keine Faktorisierung!), welche auf eine schnelle Faltung zurückgeführt werden können.
- Es existieren auch Mixed-Radix-Algorithmen, basierend auf einer gemischten Faktorisierung: $N=N_1\cdot N_2\cdot N_3$
- Der Winograd-Algorithmus garantiert das absolute Minimum an notwendigen Multiplikationen auf Kosten von Additionen. Er ist jedoch sehr unregelmäßig und seine Struktur ist von der Dimension abhängig.

Weitere Anwendungen der Faktorisierung

- Schnelles paralleles Sortieren aufbauend auf Bitonen Sortierer (~(ld N)² Zyklen)
- Dynamische Programmierung (DBV-II)
- Parallele Berechnung von Skalarprodukten
- Lageinvariante Mustererkennung (Kursvorlesung)
- Schnelle Polynomberechnung