Chapter 9

Polynomial Classifier
and
Radial Base Function Networks (RBFN)
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Approaches to designing a
classifier

There are In principle two different approaches to
designing a classifier:

1. Statistical parametrical modelling of class
distributions, then MAP -

2. Solving a map problem by approximating a function
(non-linear regression)

min E{ () -y[]
X — feature space
Y —decision space
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Ad 1.) The procedure for designing a classifier described so far is based on
approximating the class specific distribution densities

p(X|e)
parametrically by statistical models (by estimating the parameters, e.g.
a Gaussian distribution) and by deciding based on a maximum
selection. Learning means in this case: improving the parameter-

fitting.
Ad 2.) There Is a second approach, which is based on evaluating the a-
posteriori probability density
p(o]x)
and can be described by problem of function approximation.
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This function approximation can be performed e.g. by a non-linear regression
with polynoms or using a artificial neural net (NN). This lecture deals
with the foundations of both approaches.

Basically the search for a best approximation function is a variation problem,
which can be reduced to a parametrical optimization problem . Learning
In this case also means: parameter-fitting.

The equality of both approaches results from the Bayes-theorem:

p(X| »)P(®,)
P

p(@ [X) =

Independent on @

Equality results from the denominatior being independent of @ .
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In the following the transfer into a function approximation problem is to be
established.

With known a-posteriori-p. p(w|x) for every continuous X a o would be
assigned to In the best possible way (functional map/assignment f:x —
®). Since there are simply samples given, one searches for a function f,
which fits the single experiments in the best possible way and therefore
Implements a map:

f: feature space — category space

X

This task can be solved using a variation calculation. Choosing the minimal
square error as a quality factor, it Is about minimizing:

J =min E{Jf () -y['}

(Xis @)

v
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Doing so the target vectors {y.} in the decision space )/
result by simple map of the scalar labels {®;}

Q={w,0,,...,0}

V=W1Y2r- Y}
with:
0 -
y,=|1| I-thunit vector
0
_O_
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Two-class problem
with Gaussian distribution density

p(x) = Z p(X| @) P(ay)

AN

' P(w, | X)- p(X)
i P, %) p(¥)

P(o[X)-p(X) = p(x, @) = p(X| ) - P(, )

P(X| @) R(e,) pP(X| @,) P(w,) 0

u, X i, X
feature space

decision function for class 1
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Using the definition equation results:

J(f*+5f)=E{
—E L[ -y} 28 {0 (" -y} + E o7

:J(f*)zE{

f*+5f—yH2}: E{ ((F* —y) +5F,(F* —y) + )]

£ —yHZ} (fur 5f =0)

Inserting into the inequality results in:
E{ [oF[ | +2E {57 (F -y)} >0 Vf %0
This is satisfied, when the second term disappears,

because the first term is positive definite (see next slide!).

From that results a sufficient optimality constraint:
E{SfT(F —y)} =0
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The expected value can be written out in full with the joint distribution
density as follows:

E{STT(F" —y)f =2 2 f T (F - y)- p(x.Y)

= of {Z(f* ~y)- p(yIX)} p(x) =0

This term disappears, if the term in squared brackets
IS null.

From that results the following optimality constraint:

D E-y)-py ) =F> py[x)-Dy-ply|x)

=f"=> y-p(y|x)=0

The optimal estimation function is the so-called
regression function:

') =2y ply[x) =E{y|x)]
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Polynomial regression

Choosing polynomials as base functions for function approximation.
First of all for a scalar function with vectorial argument:

f(X)=a,+aXx +a,Xx,+...+a,X,
2 ith- — h
Ay X+ Ay X Xy F Ay X X, ... Witht N =dim(x)
+a X A XX A X Xt

This generalized polynom contains a constant a,, followed by N linear terms, N(N+1)/2
square terms and so on.

A polynom of degree G and dimension N of the argument vector x has

(N +G): (N +G)!

G GIN!

polynomial terms, which can be viewed as base functions f;(x), i=1,2,...,L of a function
developement.
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The polynom above can be described compactly by introducing a vectorial map

of a N- dimensional vector x to a L-dimensional vector p:

2

p(X)Z[l oK e Xy X XX XXy .. )(13 X12X2

By introducing a coefficient vector a results for the scalar polynom :

f(x)=a'p(x) = ZL:ai p.(X)| with: L=dim(p)

For the pattern classification we need a polynem function for each class

f.(X)=a,p(x) responsible for classes
k=12,...,K

Combining the class specific coefficient vectors a, to a matrix
A=la a, .. a(]

results for the vectorial polynom function:

f(x)=A"p(x)

X; X, ]T
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Optimal adjustment of matrix A

Now the coefficient matrix A has to be adjusted in the best possible way while optimizing.

The approximation problem can be applied directly to the measures or to

features of a subspace (e.g. after a KLT).
Adaption of the coefficient matrix A:

)= min€ | [f0)-y['} = minE{ [Ap0) [}

f(x)

The variation problem of searching for an unknown function is reduced to a parameter
optimization problem by choosing polynomial base functions!
The quality criterion J minimizes the variance of the residual, that is the error between y

and the approximation ATp(x).
The solution is determined using the variation approach, which leads to a neccessary

constraint:

JA"+0A)=2J(A") for YVOA=0
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Now it is to adjust the coefficient matrix A in the best possible way by
optimizing procedure.

Adaption of the coefficient matrix A:

Due to
3 =E{ [ATpe0-y[ | =E{ [ATp-y] [ATp-y]|
and a'b =trace(ba’)

scalar product dyad.

product

and trace(PQ) =trace(QP)
results:

J(A)=E {trace[:ATp - y] [ATp - y]T }}
= trace :E fyy' }: —2 trace[AT E{py’ }] + trac:e[AT E{pp'| A]

—E {Hy \2} ) tra(:e[AT E {py’ }] + trace[AT E{pp’ | A]

d
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As assumed before, the target vector can be w.l.0.g. formulated as unit vector and thus
applies:

J(A) =1- 2tra<:e[AT E{py’ }] + trace[AT E{pp’ | A]

With the variation approach results:

J(A" +5A) =1—2trace[(A* +5A) E{py’ }]
+trace [(A* +SA) E{pp' (A" + 5A)]
=1- 2trace[A*T E{py" }] - 2trace[5AT E{py’ }]
+trace[A>"T E{pp' | A*] +2 trace[&AT E{pp'| A*]
+trace[5AT E {ppT}5A]

Inserting the inequation of the neccessary constraint for an optimun results in:

trace[&AT E{pp’ | 5A] — 2trace[5AT (E{py"}-E{pp"} A*)] >0
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Due to the positive definiteness of the first term and the moment matrix E{pp'}, the
second term has to disappear:

trace[aAT (E{py"}-E{pp"} A*)] -0 VOA

and thus the equation linear in A* in for the optimal polynomial classifier:

E{ppTj A =E{py']

this equation guarantees a minimal residuum-of the error vector:
Af(x)=f(x) -y =A"p(x) -y

Estimation of both moment matrices E{pp"} and E{py"} from the training set
of data and solving a linear matrix equation leads to the solution of the
problem.

The remaining error vector calculates as:

J(A") :1—trace[A"‘T E {ppT}A*]
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Orthogonality of the estimate error vector

The best approximation requires according to the projection theorem, that the error vector
Af is orthogonal to the subspace, which is spanned by the polynomial base functions

in p(x).
That means in statistical notation, that the moment matrix, which is spanned by p and Af,
must be a zero matrix:

E{ paf}=E{ p(ATp-y) | =E{ pp"}A ~E{py'} =0

This property is inherited from p to f, since f is built from linear combinations of the base
functions in p(x).

E{ FAFT =E{ ATpAfT | = ATE{ pAfT}=0
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Unbiasedness of the approximation
function

The estimate function is unbiased. The estimate error (residuum) has
expected value 0.

E{Af} =E{f(x)-y}=0

From that follows, that f(x) Is an unbiased estimate of y:

E{f(x)} =E{y]
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Recursive learning rule for the polynom classifier

(in case new values can be added in the experiment)

For the classifier that is built on the minimal error square results the following recursive
learning strategy for the coefficient matrix A:

) 1
An = An—l —0(|:Z p|p-|r :| Pn |:A-|r;—1pn - Y :|T
i=1

This learning rule consists of the following steps:
- Choosing a starting value for A

- The current sample [x,y] is mapped using
the polynom base p(x) to [p,y]

- Calculate the estimate f based on
the given observations p and the current

coefficient matrix A: f=A'p
- Calculate the residuum: Af =f -y
- Adjust A based on the recursion above

A =A  —aGp Af'
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The weight matrix G is in this case the moment matrix E{pp'} based on the n available
samples.

A strict consideration of the recursion above would require another recursion for the
inverse of the weight matrix according to:

G.Lp.p.GL

1_ 1|l
G'=L1|G!Y al+0{(pEGilpn—1)_

G or the true additional iteration don‘t really change the result. G can even be simplified
to:

G=E{pp'}=Ypp!
=1

without impairment of convergence properties (Schirmann p. 174).
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Derivation of the recursive learnimg rule

E {ppT}A =E {pyT} opt. solution of the polynomkiI.

Introducing estimate values:

(%Zpip? jAn = %ZpiyiT
Y i=1

_/

G, H,

_ . T
GA =H_ and Gr=d a)G”‘l+ap”p$
H =1-a)H, ,+ap,y,

=G A =1-a)H_, +ap.y!
— (1_a)Gn—1An—l +apny-r:

= (Gn o apnp-r: )An—l + apny-rll-
= GnAn—l —ap, (p-rI;An—l _y:;)

— An = An—l -aG ;1pn |:A-|r;—1pn — Y :IT
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Polynom classifier for the XOR-problem

We choose a polynom with terms of second degree as regression function hoping to
find a solution by that (a linear solution does not exist!):

L X
f (X) — alxl + a‘2)(2 + a3X1X2 — an(X) — ;ai pi (X) (O’lz) (1,1)
with:
T T X1
p=[X,%,%X]| and a=[a,a,,a] (1.0)
The vertices of the square in the two-
h : . x |01 0 1
dimensional origin space X" are x !
mapped to the vertices of a (hyper-) X, 10 0 11 H
cube of a three-dimensional feature p, |0 1 0 1
space P and this space finally to a one-
dimensional category space )V : P P10 0 11 o4
p, |0 0 0 1 100 P
X>P—>)Y Yy y|0110 P -space
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The optimal parameter of the regression function a* result from:

E{pp’}a" =E{py'}| resp: |a' =R ‘R,
S S

Rpp pr

4
with: Rpp = E{ppT} z%ZpipiT
=)

1 0 0 0 10 111 L1
NN RO 0 0 0 111
:Z<O+ + + >:Z 2 1
010 0 O 110 1 O 111 11
010 0 0] [0]0 O] (11 1 1] -
4 4
and: R, =E{py] z%;piyi =%_le Vib,
(0] (1 (0 1] (1
=240-/0|+1-|0|+1-[1|+0 =1
0] 0 0 1] 0
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Thus follows:

1 0 -1||1 1
* -1

a=R_-R =0 1 -1}1|=
-1 -1 3||0] |-2

and thus a regression function

f(X)=aX +a,X, +a,XX, =X +X, —2XX,

which takes exactly the values of the target function
at the 4 function values and interpolates otherwise!
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Regression function

Matlab-demo:
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Contours of the separation lines In the original space

(hyperbolas) for different thresholds c

f(X)=X +X,—2XX,=C

X
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Separation areas for both classes

We obtain a
* linear classifier in the p-space
and a
* non-linear classifier in the x-space
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Polynom classifier for a slightly more complex example

f(X)=a, +ZN:aixi +§ ZN: a XX +..=P(X)xP(X)x...x P(xy)

i=1 m=i+1

cartesian product of the one-dimensional polynoms with:
dim(x) =N and degree of polynom: G

I.e. the N-dimensional origin space is mapped to a L-dimensional feature
space, which contains terms like:

XPXp2 - X with: p+p, +...+ py <G

For a polynom of degree G and a feature vector of dimension N results a
dimension of the output space L of:

L N+G) (N+G)!
| 6 | GIN!
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Demo with MATLAB

(Klassifikationgui.m)

e Open Matlab

— first call setmypath.m, then

— C:\Home\ppt\Lehre\ME_2002\matlab\KlassifikatorEntwurf-
WinXX\Klassifikationgui

— Set of data: load samples/xor_test_exakt.mat
— use polynom classifier of degree 2

e Two-class problem with banana shape
— Set of data: load samples/banana_train_samples.mat
— Experiment with polynom classifier of degree 2 and degree 3

Starting Matlab-demo

for obtaining enough
independent samples for

the polynom :
oo oo
oo oo
oo oo
oo oo
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Properties of the polynom classifiers:

e Advantages:

— Linear design equations with explicit solution
for a global minimun of the approximation error

e Disadvantages: .

— The developement using Polynomial-basis
functions with global domain shows poor
convergence. Local specifics of feature clusters
can be approximated only very poorly,

otherwise they lead to a loss of generalization
ability.
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Function approximation with a radial-base-

function-network (RBFN)

 Instead of using polynoms for the regression task, a linear

developement in radial base function (RBF) can be considered.
Although another non-linear parameter estimation problem results
(Just like for NNs), which typically can only be solved iteratively,

better convergence properties result.
 RBFs as interpolation functions are functions of form:

p(jx—ci[p

* I1.e. the argument of each RBF is the Euclidean distance between
Input vector x and a center c; (which explains the name. The RBFs
have an effect only in local enviroments (as opposed to polynoms).
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Example for radial-base-functions (RBFN)

p(x)zexp[— 12Hx—ciH2) (Gaussian-RBFs)
20
2
O.
X) = '
P okl

* [t can be shown, that each function f(x) can be approximated
arbitrarily exact for sufficiently big L with the following sum:

L
f(x)= an(X) = +Zai p; (X)
=1
e Unknown are the parameters:

& f.4c) o
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RBF-network as a generalized linear classifier

f(x)=a'p(x) = >a,p,(¥)

The original space is divided into hyper planes for the perceptron.

RBF-network: The classifier that is linear in the new variables p; divides the original space
Into hyper spheres , since the p;(x) are non-linear function of x.
The polynom classifier can be characterized in the same way.
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Solving the XOR-problem with Gaussian-RBFN

We choose a Gaussian-RBFN of dimension L=2 as regression function:

f(x)= an(X) =8, + Zai p; (X)

1 2
-l

L
=a,+ Y a exp| -
i=1

L
=a,+ Y. a exp
0 I 2

With L = 2, the two centers
c,=[1 1] and c,=[0 0]

_(X_Ci)T (X_Ci)j _

(1.1)

(1,0)

X -space

% ~0.135 e'~0.368 e ~0.368 1

1 et ~0.368 e ~0.368 e?*~0.135

Xl
and o, =1results: X,
B 2\ | Py
exp(— X—C, N
P(x) = , f(p)
exp(— X—C,

0.135 -0.264 ~0.264 0.135
f(P)=p +p, -1
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Solving the XOR-problem with Gaussian-RBFN

0 1 i
The vectors X = L} and x = {O} are mapped to the same point p = {e } :

e—l

.
(0,) 1)
(0, (1,0)
P -Raum X -Raum

In the P-space both classes are obviously linearly separable:

separation line in P -space: 1 (P)=Pp,+p,—-1=0

separation curve in X - f (X) = exp (_HX B C1H2 ) N eXp(—HX _c, H2 ) _

space:

1=0
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Properties of RBFNSs:

e Advantages:

— Local specifics of feature clusters can be approximated
very good, without loss of quality for the generalization
ability, 1.e. very good convergence performance.

e Disadvantages: .

— Since the design is non-linear in the parameters, the
problem can only be solved iteratively with all negative
concomitants like bad convergance and the possibility
to find only auxiliary minima and thus suboptimal

solutions.
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Demo with MATLAB

* Function approximation with RBFNS:
(Demo/Toolboxes/Neural Network/Radial Basis Networks)

— Good choice of o;(able to generalize)
(Radial basis apprOX|mat|on demorbl.m)

— Choice of o; too small (overfitting, i.e. added point cannot be reached)
(Radial basis underlapping neurons, demorb3.m)

— Choice of o;too big; the base functions span the space not properly, since they are

almost Ilnearly dependent on each other.
(Radial basis overlapping neurons, demorb4.m)

« Classification example with RBFNs (PNN classification,
demopnnl.m).

Starting Matlab-Demo

I Riirlbhard+ Inctitiit Ffiir Infarmatily | Ilniviarcitat Croaithiirn

NAAC 11l I/ Aan 0O

2R



	Chapter 9
	Approaches to designing a classifier
	Two-class problem with Gaussian distribution density
	Polynomial regression
	Optimal adjustment of matrix A
	Orthogonality of the estimate error vector
	Unbiasedness of the approximation function
	Recursive learning rule for the polynom classifier (in case new values can be added in the experiment)
	Derivation of the recursive learnimg rule
	Polynom classifier for the XOR-problem
	Regression function
	Contours of the separation lines in the original space (hyperbolas) for different thresholds c
	Separation areas for both classes
	Polynom classifier for a slightly more complex example
	Demo with MATLAB (Klassifikationgui.m)
	Properties of the polynom classifiers:
	Function approximation with a radial-base-function-network (RBFN)
	Example for radial-base-functions (RBFN)
	RBF-network as a generalized linear classifier
	Solving the XOR-problem with Gaussian-RBFN
	Solving the XOR-problem with Gaussian-RBFN
	Properties of RBFNs:
	Demo with MATLAB

