Chapter 6

Optimal feature selection
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Simple recognition example with
two objects (circle and square)

Assuming that the images are scanned withX&ll2 pixels.

No one would use 5512 pixels as features of the objects !!
(1 feature Is sufficient: area)
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The complexity of designing a classifier increasdh dimensionN of the feature
space. The intention of the feature selection shtmose an appropiate subspace.

In general it does not make great sense to ugaixbés of an image directly as a

It is also not very useful to enlarge a feature space byngdtew features, if the

ldea: Transforming the original images into a neattiee space (shifting and

Feature selection with
liInear transformations

The selected features must have high relevanaghBmacterization of the
classes, and at the same time guarantee a highildgpaldiscriminate
between classes. Thus they must vary little withalass (intra class distance),
and guarantee great distances between the clastasc(ass distance).

feature N=512=218=0,25 mio. pixel). Generally there is high redundaimcthe
Images since the pixels highly correlate.

new features highly correlate to the existing.

rotation of the coordinate system (unitary transftation)). And thus reduction
to few features and - at the same time - information aesgon/condensation.
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Characterizing random events In vectc
spaces

A random event x' is an element of the vector spa¥eFor discrete spaces the
elementary event consists of an ordered set of numericava

X=Xy X¢'y X',y X'}
or for continuous spaces consists of a time- or positiontfomsx(t) .

A stochastic process x consists of a set of events={x}.

{X (0}

> >
random event stochastic process

1
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Statistical characteristics of a process

N-1
expected valuep, =X =E X ¥ — -

NIO

pag] 0 %0 X,
autocorrelationK =R, =E fx' F EKx;)}= N X K x0G XX,
d yad. =0

productI Xi2 D(l) Xi2 D(Il Xi2 D(iz
The elements of the correlation matrix describe the
correlation between the particular vector elements

XX
[% X}, { XoX,} ... in time/local direction with T I I
increasing distance between elements:

autocovariance: C, =E #-X X-X ") ¥R -XX'
cross-correlation:R, =E Xy' }

cross-covarianceC,, =E X(-X Y-V ') ¥R, -Xy'
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Gaussian distributions stay so under
linear transformations

1 _l(x_ux )T Cxx_:L (X_ux)

p(x) = e?
Jem)" detc,, )

from y = Ax follows forp ¥ ) a normal distriliion with:

p’y :AIJ'X

and:

C,, =E{(y-W(y-y)} =AB(x-J( x-FJ} A’
=C,, =AC A"
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Calculating the ACF from the
autocorrelation matrix

The values of the lineacyclic) ACF result from diagonal sums of thesfiodical continuegd
autocorrelation matrix:

linear ACF:

XO Xl X2 XOX1 X2 XOX1X2
= X X X Xo X, Xy Xo XX,

X+ X+ X XX+ XX, XX,

autocorrelation matrix
X XX

Xo X(\)’XQ\ X\OXJL\ XonA
X [ XXe XXy XX,
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Decorrelation of neighbouring signal
or pixel values In the vector space

Given a signal or pixel value; what is the probabibfythe
neighbouring signal amplitude taking similar values?

In general high correlation to neighbouring valudsit @ngle
bisection in vector space)

A

A 1D ok 2D similar
\ 2
| g >> o< ! »o
/ !
v
>

X X X
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A simple example for the transition to a new

feature space using an orthogonal transformatig
Given a signal with two scan X:H:{l}{o} original space
values ol L0) 11
1] [-1 [T -1
_5{1}1{ J- 5/_2%{1}@%{ J feature space
71
6+ * Selecting only the first component (subspace) in the
51 ° o original space, results in an approximation pereomoe of
4l o (omittung one scan value strikes !!):
3__
4
1L
0 » In contrastin the new feature space:
1 2
HS\/E q‘ — 1,07 — 08%,
7,21
——— non-variable part HEJE */_ZH
variable part Also: the new values do not correlate!

)}y
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Representing in the vector space by rotation of the
coordinate system with orthogonal transformation

A A
A —> A
>
original space feature space %
X' =A'X
L T _ +1 +1 ] -I-—l_ TT_ _ +1 -1
with: A _%{_1 .| and: (A7) =(AT) =A =1 a1

1 0 , , I e ! +x)| 1 (X, =X,)| ~
X:L)((j:x1e1+x2e2:xl{o}+x2{l}:x1Q+x2g:x${l}+x&%{ J:—(Xlz 2){1}+—( 22 1){ j

v e
non-variable part variable part

mit: € = Ae, und €= Ag
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Optimal feature selection with unitary
transformations

(Karhunen-Loeve or principal axis transformation)

s task: find new base vectors
86
&
£ & " AT
LY {e} { ¢
€ 3
l _ AT
e} : X =A X
€ €
| >
€

Unitary transformation, for real <AX,Ay> = <X A %y >|:<X \Y >

orthogonal transf. => rotation of
the coordinate system - AA=l = A*1t=A"
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If the corresponding basis system is arbitrary (arkth@®vn by sender and reciever)
a single vector elememntcan be characterized by a scalar value, if the first bas
vectore’, is chosen in direction of (element occurs or not):

X
X=a-—+0[&, +0L& +...
b

In general the point is to find an optimal transfiation into an appropiate
coordinate system for a completesemble of vectors, in order to characterize
the elements of the ensemble with as few coeffisias possible.

We start with determing the first new basis ve@pr, which we choose so that the
approximation error for the ensemble of n vectorsngnimal, or the sought
space direction, that representsaimal information of the ensemble.
According to the projection sentence the smallest easults from projection to
the subspace, which is representec@pysought is the correct space direction.
An optimal solution is sought starting from a qualiacfor.

e
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N
[
N

X AT y " W A
NxN 1< M<N NxN

W=luy =ye +yse,+...+Y, &
the best approximation must apply fobitnary M !

Starting from a square quality factosuds:
I=Hle +eof" -+
= 2%, —(x, €8] +[ %= (%, & & +..)
= Effx-x &) ¢}

Px
projection to

S(e))
for the ensemblex =: ¥ } 1= 1,2, n,
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ZR: For a orthogonalrojection to a subspacex
applies according to Pythagoras:

L (L

=[P

with: (x,€)€=(§§) X

= |[x —Px

for real vectors applies:

(a,b) =(b,a)
/ Qx=(I-P)x

Px
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and thus:

2

(X6 8. %8) &
=(x,6)°(§, §)
=1

(X €) él\\i}

Ve

= E{|x|" - (x €)3
= E{x|" - (&, ¥(x &}

Useful formulas:

dyad.

product

@a,byc,d=d (bd )d

a(b,c)=(ab')d

(a,b)y =tr(ab")

2)

adjoint

(AB)=tr(A B

B

The inner product can be calculated over the trace ¢

the outer product!

(maximization of the
squares of the FC)

for image matrice

)f
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and thus: J=E{|xX|" -e"( xX) &

=E{x} -e" B ¢ ¢

. v

of R

variance of x auto-

correla_tion
matrix

=[J=tr(R,)-€ R, €=min
Sl

Side condition: the new basis vector Is a unit vector :

el =(¢, & =1
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The first term In J IS constant and thus J is minimizeithe
following term Is maximized:

J=¢€¢'R, él max

Involving the side condition in the maximization df by a
Lagrange approach:

'R, E§+A(1-(& &)

using: ————
oy
the neccessary constraint for an extremmasults in

aJ"
=2(R e -/ 0
s = 2R 1)

and thus the Eigenvalue equati

R.&=1¢

oy,y) _ = % and: a(yaTRy) = Ry (if R symm.)
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Inserting inJ" results injJ' =Ae' € = A

This term is maximized, if the maximal Eigenvaldg-A.., and the
corresponding Eigenvector is chosen.

The one-dimensional subspace alengs separated, within the
remaining subspace one choses the second basis ggeto A,
and the second largest Eigenvalue, and so on.
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Approximation errors

The approximation error witM components (& M < N) results
from:

Jy =E{|x-Z3 =& |x-AI,ATX] mit A =[;€, .., €]

orthog.
projectionP

to the subspace, which is spaned by the ft&igenvectors

Ju =E{x-Px} =B X" -[Pqf =€ ¥ -(Rx P¥

applies:

A'A =l A" isorthogonal)

A'R A =diagh, A, ... Ay ) with:A,=A,=2A,>... A,

the projection matrix is idempotent and symmetric

and thus:

(PX,Px) =(X, P Py =(x PR =(xPx=(x Al A%
=l AX AX)= t(A " 'A )
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Approximation errors

and inserted into the quality measure:

Ju = E{tr(xx")} —Btr( 1,,A{xx) A}
:tr(Rxx_IM '?‘TRXAJ )

diag(h Ay ... Ay )

=tr(R,,) - ZA =3 4

=M +1

l.e., the approximation error corresponds to the slithe
Eigenvalues, that have not been considered.
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The Karhunen-Loéve transformation
(KLT)

The Karhunen-Loéve transform is defined as:

y=A'X

X = Ay

and it applies:

R, =E{yy} =E A[xx) A =AR A
with: A 24,221,

KLT
KLT*

=Adiag( A, A, .., A)

The KLT can be calculated (as seen here) based orothdation matrix, or
based on theautocovariance matrix (the expected value is subtracted):

y=A"(x—W,)
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Interpretation of the KLT

T Z=X
X, AT Ly ) oy [w, A | Z3
NxN 1< M<N NxN
Fourierseries, developing tlkee
zaie;
_ r T A\
z=Al, A X
—
calculating the
Fouriercoefficients,
projection to the spac
spaned bg
projection tg the subspac
projection to the subspace: . Fourierseries (developing th
€% | [ a column vectors oA ):
o e a, @j M ,
y=IyAXx=l % =] . L z=Aw=> a0 ¢
— T —
. [— =L FC  column vectors

(e X | [ay | ) of A

Minimizing the error is equal to maximizing the energy @éw®) in the transformed area or the
maximization of the square sum of the Fouriercogffits.
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KLT for images (2D)

The above approach can be applied directly to a vectaghndonsists
of stacked row vectors of animage matrix of dimensionNxN (since
we are only concerned about the complete sum error!). owve
have to find the Eigenvalue for a symmetrical matfidionension
N?xN?. An Eigenvalue Eroblem for matri¥xN requiresO(N°)
operations, so her@(N®)

If an ensemble of images.={ X} of dimensionNxN can be modeled
by the dyadic product of two one-dimensional ensembles of
dimensionNx1

x'={x}  x*={x}

according to:

X:= x]sz i.e. X is separable!
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KLT for images(2D)

Thus for every one-dimensional ensemble a KLT can lmulzded and thus:

2D-KLT for separable images

Y =AY (xX 2 )A 2=A XA ?

Thus only 2 Eigenvalues of dimensibixN are to be calculated. This results in a
computing time improvement o®(N ©) / O(N 3) = O(N 3)

The transformation with separable kernel can also be ejutamely from
O(N 4) to O(2N 3)=0O(N 3).
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Properties of KLT

e advantages:

— The KLT is optimal (wrt. the square error) in termseft
representation in subspaces with orthogonal basis.

For highly correlating vector elements results a higfhrmation
condensation in few elements of the KLT. The KLT profrtzm

high correlations in the vector elements.

— SinceR,, Is a diagonal matrix, the values in y do not correlate!

e disadvantages:

— The KLT isdata dependent and must be calculated separately for

every dataset.
— Also there igno fast algorithm for KLT.
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Data reduction depending on degre

of correlation

data un-correlated (white process)
KLT is of no significance

data highly correlated. KLT has
high effect.

extreme case: images with constant gray valu
(a vector is sufficient for representation)

A}

=4
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Properties of KLT

variance of coeff. in image space (FC
of KLT). Values montonic dec:reasingk

variance of coeff. in

2
a,(n) original space

>
\ n
Every subtotal is

independent ofM
maximal!

o2(n) \

A
[
\ B
\
\
\
\
\\ e
\\ ///
\\ \ ///
\ \\"z,' s
AR LT e
AN 7 -7
ANNE T
\\\"'-, //,/’/_,.. ~~~~
AW LT e
N Y
22 \
W

behaviour of different unitary

transformations

UJ
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Further properties of KLT

The KLT guarantees, that the variances of the transforfie&tures (principal
diagonal elements of the covariance matrix) are makimbalanced
(minimal entropy):

y=A"(Xx—H,)

A maximization of the entropy, or a constant variantellbfeatures can be
obtained by avhitening transformation:

u :A_lleT(X_lJX) /\—1/2: diag@1—1/2 Az_ 1/2’“ A|\_j 1/2:

All features have same variance wg<{1 (sterical

iInvariant relations). The energy is distributed A 02(1) = var(y. )
equally to all features. \i y n

The variables remain un-correlated when multiplied
with a diagonal matrix! \
Whitening e.g. is needed to obtain a robustness as

greatest as possible if a component is left out (e.g
In transfer mode systems).

o)

SV
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Further properties of KLT

The optimality of KLT wrt. the minimal error square lesih a best information
condensation obne ensemble and allows a selectiorddominant features dfl
observed values. Question: how can all dataegpeesented in the best way?

This does not lead neccessarily to a best class representéeveral classes are too
different. An optimization wrt. this leads to the salteddiscriminantion analysis.
Question: how can the data tiscriminated in the best way?

S

In this example, the features of
the first Eigenvector
overlap, while the feature
of the second Eigenvector
distinguishes the classes!

Assumption: variance alorgy’
greater than variance along
e, .

covariance matrix is computed
for the entire ensemble,
because only one form of
feature selection can be
chosen!
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