Kapitel 2

Grundlagen der Mustererkennung

Was ist Mustererkennung?

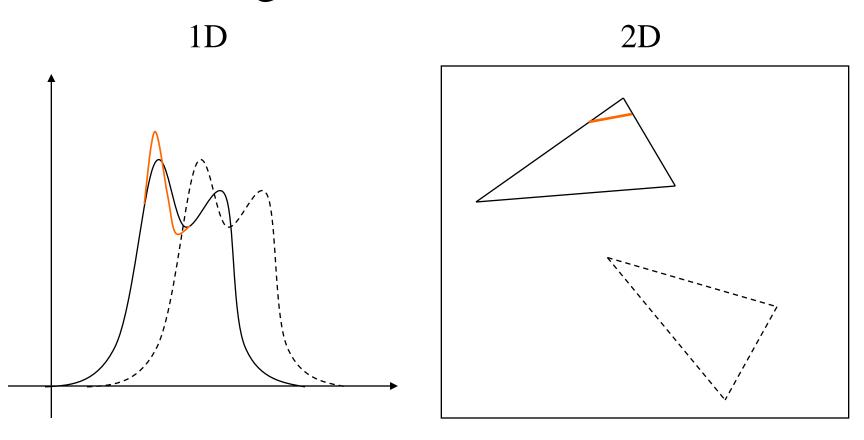
Mustererkennung ist die Theorie der bestmöglichen Zuordnung eines unbekannten Musters oder Beobachtung \mathbf{z}_i zu einer *Bedeutungs-* oder Äquivalenzklasse \mathcal{E}_i (Klassifikation).

Eine Äquivalenzklasse \mathcal{E} besteht aus einer Menge von Mustern $\{\mathbf{x}_i\}$ und einer zweistelligen Verknüpfung (Äquivalenzrelation) mit den folgenden drei Eigenschaften:

- a) $\mathbf{x}_i \sim \mathbf{x}_i$ reflexiv (jedes Element ist zu sich selbst äquivalent)
- b) $\mathbf{x}_i \sim \mathbf{x}_j \Rightarrow \mathbf{x}_j \sim \mathbf{x}_i$ symmetrisch
- c) $(x\sim y)\&(y\sim z) \Rightarrow x\sim z$ transitiv

 $\mathbf{x}_i \sim \mathbf{x}_j$: d.h. \mathbf{x}_i ist äquivalent zu \mathbf{x}_j in Bezug auf die Relation \sim

Relevante and <u>irrelevante</u> Änderungen in Signalen und Bildern

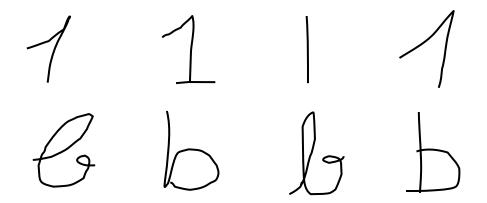


Bedeutungs- oder Äquivalenzklassen

- Äquivalenzklassen \mathcal{E} können typischerweise durch zwei Arten definiert werden, nämlich
- 1) Angabe aller Repräsentanten von \mathcal{E} , da die Veränderungen nicht systematisch formuliert werden können, oder:
- 2a) Durch ein erzeugendes Element \mathbf{x}_0 und eine mathematische Gruppe \mathcal{G} (Abgeschlossenheit der Daten)
- 2b) Abgeschlossene Abbildung mit anschließender Abbildung auf einen Unterraum (Projektion, Okklusion), z.B. Bewegung eines 3D-Objektes im Raum mit anschließender Projektion auf die Kameraebene

Beispiel für 1):

Die Menge aller handgeschriebenen Buchstaben oder Ziffern:

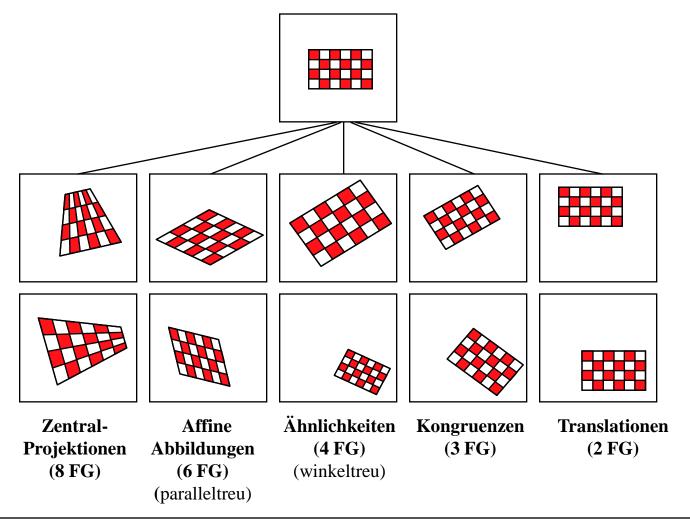


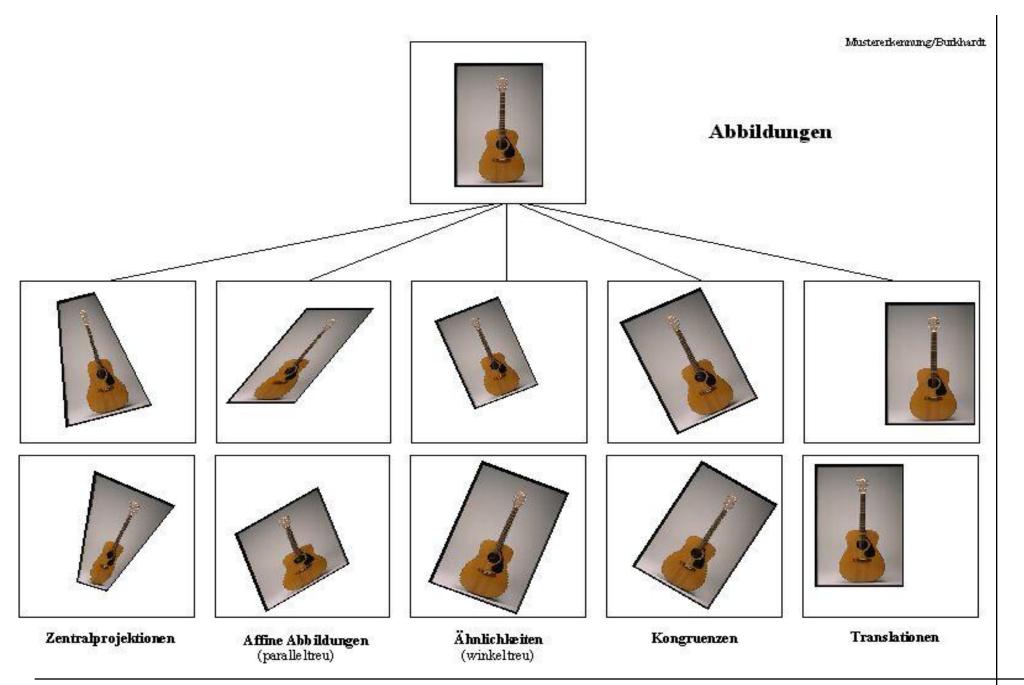
Hier ist eine parametrische Beschreibung der Äquivalenzklasse praktisch unmöglich.

Beispiel für 1): Äquivalenzklasse für den Druckbuchstaben A

Figure 1.1. Variety of different images all representing the same character A (from Hofstadter's Metamagical Themes: Questing for the Essence of Mind and Pattern [HOF1985]).

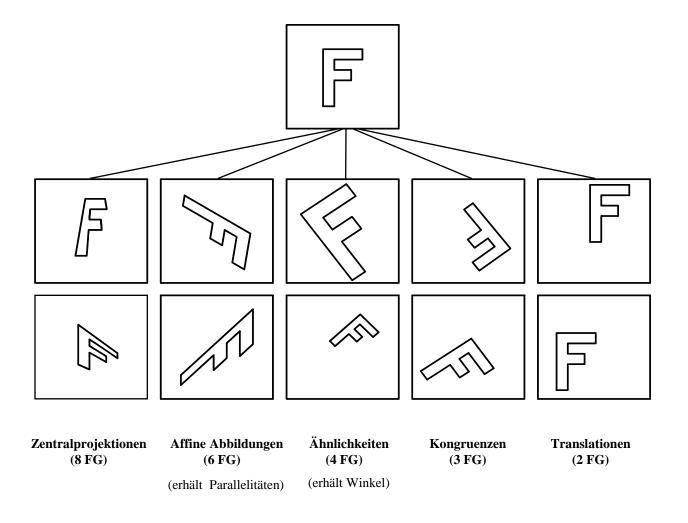
Beispiel für 2a: Geometrische Transformationen



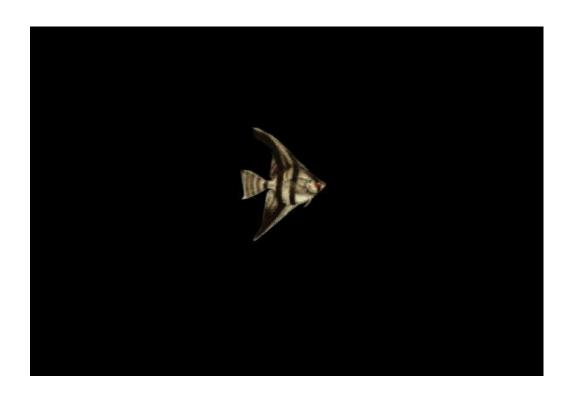


H. Burkhardt, Institut für Informatik, Universität Freiburg

Geometrische Transformationen



Beispiel für 2b: Bewegung im Raum (Translation und Rotation) mit anschliessender Abbildung auf einen Unterraum; unvollständige Beobachtungen durch Okklusionen



Mathematische Gruppe

- Def.: Eine algebraische Struktur \mathcal{G} mit einer zweistelligen inneren Verknüpfung heißt Gruppe, wenn für beliebige Elemente a,b,c $\in \mathcal{G}$ folgende Gesetze gelten:
- 1) $a \bullet (b \bullet c) = (a \bullet b) \bullet c$ assoziativ
- 2) Es existiert ein *Eins- oder neutrales Element* $e \in \mathcal{G}$, mit $a \bullet e = e \bullet a = a$ $\forall a \in \mathcal{G}$
- Zu jedem a gibt es ein *inverses Element* $a^{-1} \in \mathcal{G}$, mit: $a \bullet a^{-1} = a^{-1} \bullet a = e$
- Aus 1)-3) folgt, dass es <u>genau</u> ein Einselement und zu jedem $a \in \mathcal{G}$ genau ein inverses Element $a^{-1} \in \mathcal{G}$ gibt.

Für eine abelsche Gruppe gilt die Kommutativeigenschaft:

$$a \bullet b = b \bullet a \qquad \forall a, b \in \mathcal{G}$$

Beispiel für 2a):

Die Gruppe $\mathcal{G}(\mathbf{p})$ der geometrischen Transformationen, welche die Bewegung von Objekten charakterisieren.

Man erhält eine Äquivalenzklasse durch Angabe eines erzeugenden Elementes \mathbf{x}_0 sowie einer Transformationsgruppe, welche auch parametrisiert mit dem Vektor \mathbf{p} beschrieben werden kann. Dies kann z. B. die Gruppe der ebenen (Euklidschen) Bewegungen (Translation und Rotation) sein:

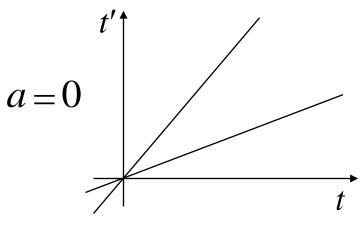
$$\mathcal{E}_{\mathcal{G}}(\mathbf{x}_0) \coloneqq \{ g_i(\mathbf{x}_0) \mid \forall g_i \in \mathcal{G} \}$$

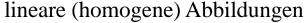
Für zwei Objekte x,y der selben Äquivalenzklasse gilt demnach:

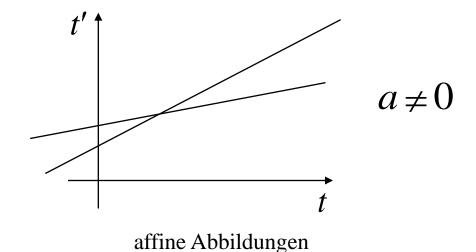
$$x \sim y \Leftrightarrow \exists g_i \in \mathcal{G}: x = g_i(y)$$

Die affine Abbildung in einer Variablen

$$t' = At + a$$







Affine Transformation bzgl. der zweidimensionalen Koordinaten $\mathbf{t}=(t_1,t_2)$:

$$\mathbf{t'} = \mathbf{A}\mathbf{t} + \mathbf{a} = \mathbf{A} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} + \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

6 Freiheitsgrade, A regulär

mit:

A=I

die Gruppe der Translationen

 $(\dim(\mathbf{p})=2)$

 $\mathbf{A}^{\mathrm{T}}\mathbf{A}=\mathbf{I}$

die Gruppe der Kongruenzen

 $(\dim(\mathbf{p})=3)$

(reine Drehung, unitäre Matrix, Spalten orthonormal)

 $\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{k}\mathbf{I}$

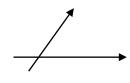
die Gruppe der Ähnlichkeiten

 $(\dim(\mathbf{p})=4)$

 $det(\mathbf{A})\neq 0$

die Gruppe der affinen Abbildungen \mathcal{A}

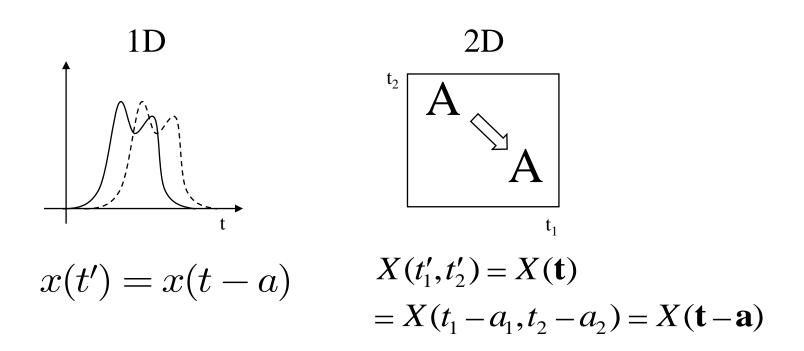
 $(\dim(\mathbf{p})=6)$



Affine (schiefwinklige) Koordinaten, als Verallgemeinerung der kartesischen (Spalten von A)

Die Gruppe der Translationen \mathcal{T} für kontinuierlich definierte Signale und Bilder

Die Menge der Translationen $\{\tau\}$ bilden hinsichtlich der Verknüpfung durch Zusammensetzung $\tau_1(\tau_2(...))=(\tau_1 \quad \tau_2)(...)$ eine abelsche Gruppe.

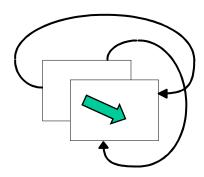


Die Gruppe der Translationen Tals abgeschlossene Operation

Auf *unendlich* ausgedehnten Koordinaten lässt sich die Translation natürlich als abgeschlossene Operation definieren. Die Abgeschlossenheit ist erforderlich, damit nicht Elemente bei der Operation verschwinden und andere hinzukommen. Man verlangt:

$$\mathbf{x} \in \mathcal{X} \Rightarrow \tau(\mathbf{x}) \in \mathcal{X} \quad \forall \tau \in \mathcal{G}$$

Die Abgeschlossenheit der Daten bei einer Translation, angewendet auf Signale oder Bilder, welche nur auf einem *endlichen* Bereich definiert sind (Signal- oder Bildfenster), erreicht man durch *zyklisches Verschieben*. Übertragen auf unendlich ausgedehnte Koordinaten ließe sich dies auch durch eine periodische Fortsetzung eines endlichen Definitionsbereichs oder Fensters erreichen.



Kompakte Gruppe: die die Gruppe beschreibenden Parameter sind auf einen endlichen Bereich begrenzt!!

Eine mathematische Gruppe garantiert die Abgeschlossenheit, da ein inverses Element existiert!

Die Gruppe der Translationen Tfür abgetastete endliche Signale und Bilder

Abgetastete endliche Muster:

$$\mathbf{x} := \{x_i\}$$
 $i = 0, \dots, N-1$
 $\mathbf{X} := \{X_{i,j}\}$ $i, j = 0, \dots, N-1$

Translation als zyklische Permutation:

$$\tau_k(\mathbf{x}) := \{x_{(i+k) \bmod N}\} = \{x_{< i+k>_N}\}$$

$$\tau_{k,l}(\mathbf{X}) := \{X_{< i+k>_M, < j+l>_N}\}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix} \Rightarrow \tau_{2,1}(\mathbf{A}) = \begin{bmatrix} 10 & 11 & 12 & 9 \\ 14 & 15 & 16 & 13 \\ 2 & 3 & 4 & 1 \\ 6 & 7 & 8 & 5 \end{bmatrix}$$

Die 2D-Translation kann in zwei 1D-Translationen faktorisiert werden (Zeilen/Spaltenpermutation):



Die zyklische Permutation von Zeilen und Spalten einer Bildmatrix mit Hilfe von Permutationsmatrizen:

Spaltenpermutation
$$\tau_{1,1}(\mathbf{A}) = \mathbf{P}^T \mathbf{A} \mathbf{P}$$
 bzw: $\tau_{p,r}(\mathbf{A}) = (\mathbf{P}^p)^T \mathbf{A} \mathbf{P}^r$
Zeilenpermutation

Die Permutationsmatrix ist orthogonal und somit gilt:

$$\mathbf{P}^{-1} = \mathbf{P}^T$$

So zum Beispiel für N=4:
$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad \text{mit: } \mathbf{P}^0 = \mathbf{P}^4 = \mathbf{I}$$

Die Gruppe der Kongruenzen \mathcal{C} für kontinuierlich definierte Bilder

Die Gruppe der *Kongruenzen* entstehen durch *Translation* und *Rotation*, was man auch mit *Euklidscher* Bewegung bezeichnet.

$$\mathbf{t'} = \mathbf{A}\mathbf{t} + \mathbf{a} = \mathbf{A} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} + \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$\mathbf{A} = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

Die Drehmatrix A ist orthogonal und es gilt:

$$\mathbf{A}^{-1} = \mathbf{A}^T$$
 sowie: $det(\mathbf{A}) = \mathbf{1}$

Die Gruppe der Ähnlichkeiten S für kontinuierlich definierte Bilder

Die Gruppe der Ähnlichkeiten entsteht durch Verschieben, Drehen und Stauchen:

$$t' = At + a$$

$$\mathbf{A} = k \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{pmatrix}; \quad \mathbf{a} \neq \mathbf{0}, k \neq 0$$

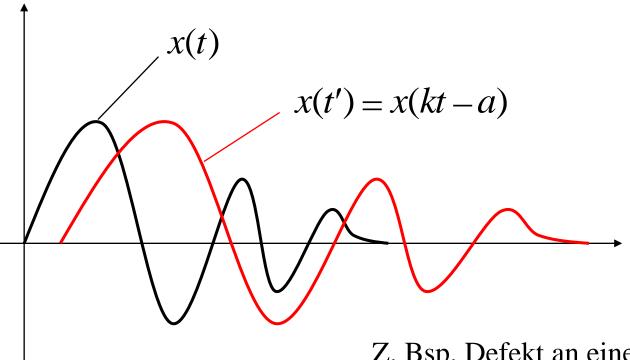
Daraus folgt:

$$\mathbf{A}\mathbf{A}^T = k^2\mathbf{I}$$
 sowie: $det(\mathbf{A}) = k^2$

Sowie:

$$\mathbf{A}^{-1} = \frac{1}{k^2} \mathbf{A}^T$$

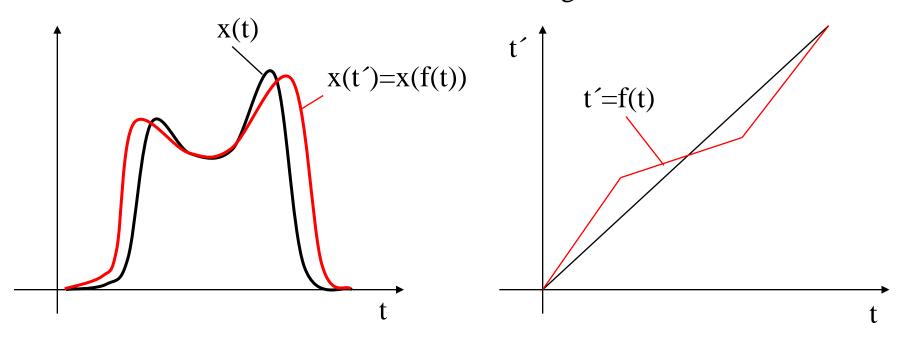
Allgemeinere Äquivalenzklassen : Z. Bsp.: stauchen und verschieben eines eindimensionalen Signals



Z. Bsp. Defekt an einem rotierenden Teil (z.Bsp. Einer Turbinenschaufel) bei unterschiedlicher Drehzahl (oder sogar zeitvarianter Drehzahl (siehe nächste Folie).

Allgemeinere Äquivalenzklassen: Beliebige Zeitmodulationen

x(t')=x(f(t)) f(t) monoton wachsend (Kausalität, Zeit läuft nicht zurück), aber sonst beliebig



Ähnlichkeiten im Sinne einer verallgemeinerten Metrik!

Allgemeinere Äquivalenzklassen: Beliebige Zeitmodulationen

- z. Bsp.: unterschiedliche Sprechergeschwindigkeit bei der Spracherkennung oder variierende Tempi bei der Musikerkennung
- Dieser Fall ist schwieriger als das Beispiel mit der Turbinenschaufel, da man ja dort einen Drehzahlmesser anbringen und damit die Zeitschwankungen korrigieren könnte

Noch allgemeinere Bedeutungs- oder Äquivalenzklassen

Äquivalenzklassen \mathcal{E} können allerdings auch auf einer sehr hohen abstrakten

- 1) semantischen Ebene (Tiergattung: ein Hund, ein Fisch)
- 2) oder funktionalen Ebene (ein Auto, ein Schiff) definiert sein.