# Boosting and Relationship to SVM

# By Bhaskara Reddy Poluru poluru@informatik.uni-freiburg.de

# Outline

#### Introduction

- AdaBoost
- Error Analysis
- Relationship to SVM
- Literature

# Introduction

- A general method for improving the accuracy of any given learning algorithm
- · constructs an ensemble of weak learners
- · What is a weak learner?

# Outline

- Introduction
  - AdaBoost
- Error Analysis
- · Relationship to SVM
- Literature

# **AdaBoost**

Given:  $(x_1, y_1), \ldots, (x_m, y_m)$  where  $x_i \in X, y_i \in Y = \{-1, +1\}$ Initialize  $D_1(i) = 1/m$ .
For  $t = 1, \ldots, T$ :

- Train weak learner using distribution  $D_t$ .

- Get weak hypothesis  $h_t : X \to \mathbb{R}$ .

- Choose  $\alpha_t \in \mathbb{R}$ .

- Update:

(Where)  $\epsilon_t = \Pr_{i \sim D_t} \left[ h_t(x_i) \neq y_i \right] = \sum_{i:h_t(x_i) \neq y_i} D_t(i).$ where  $Z_t$  is tion).  $\alpha_t = \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right).$ Output the fine  $H(x) = \operatorname{sign} \left( \sum_{t=1}^T \alpha_t h_t(x) \right).$ 

Fig. 1. The boosting algorithm AdaBoost.

## An Example on AdaBoost











# Outline

- Introduction
- AdaBoost

**Error Analysis** 

- Relationship to SVM
- Literature

# AdaBoost Training Error (freund and shapire [23])

Let us write the error  $\epsilon_t$  of h<sub>t</sub> as:  $\frac{1}{2} - \gamma_t$ 

The training error of the final hypothesis H is at most:

$$\prod_{t} \left[ 2\sqrt{\epsilon_{t}(1 - \epsilon_{t})} \right] = \prod_{t} \sqrt{1 - 4\gamma_{t}^{2}} \leq \exp\left(-2\sum_{t} \gamma_{t}^{2}\right)$$

Thus, if each weak hypothesis is slightly better than random so that  $\gamma_t \geq \gamma$  for some  $\gamma > 0$ , then the training error drops exponentially fast.

AdaBoost is adaptive in the sense that it adapts to the error rates of particular weak learners

### AdaBoost Training Error

• In the general case the training error of H is bounded by:

$$\frac{1}{m} |\{i: H(x_i) \neq y_i\}| \leq \frac{1}{m} \sum_i \exp(-y_i f(x_i)) = \prod_t Z_t$$

$$H(x) = \operatorname{sign}(f(x)).$$

• This equation suggests that the training error can be reduced most rapidly (in a greedy way) by choosing  $\alpha_t$  and  $h_t$  in each round to minimize:

$$\begin{split} Z_t &= \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i)) \ = \ 2\sqrt{\epsilon_t (1 - \epsilon_t)} \\ \alpha_t &= \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right). \end{split}$$

#### AdaBoost Generalization Error

• Training sample *S* of size *m*, VC-dimension *d* and With high probability the generalization is at most:

$$\Pr\left[H(x) \neq y\right] + \tilde{O}\left(\sqrt{\frac{Td}{m}}\right)$$



### AdaBoost Generalization Error

$$\text{Margin of example (x,y)} = \quad \frac{y \sum_t \alpha_t h_t(x)}{\sum_t |\alpha_t|}.$$

New bound on the generalization error (independent of  $\mathcal{T}$ ):

$$\hat{\Pr}\left[\mathrm{margin}_f(x,y) \leq \theta\right] + \tilde{O}\left(\sqrt{\frac{d}{m\theta^2}}\right)$$



# Outline

- Introduction
- AdaBoost
- Error Analysis
   Relationship to SVM
- Literature

# Comparison to SVM

- SVM works directly with margins, attempting to maximize the minimum margin of any training example (explicitly maximizes)
- AdaBoost tries to make the margins of all the training examples as large as possible (implicitly maximizes the minimum margin)

# Comparison to SVM

(freund and shapire 1999)

let us denote the vector of weak-hypothesis predictions associated with the example (x,y) by  $\mathbf{h}(x) \doteq \langle h_1(x), h_2(x), \dots, h_N(x) \rangle$  which we call the *instance vector* and the vector of coefficients by  $\boldsymbol{\alpha} \doteq \langle \alpha_1, \alpha_2, \dots, \alpha_N \rangle$  which we call the *weight vector*. Using this notation and the definition of margin given in Eq. (2) we can write the goal of maximizing the minimum margin as

$$\max_{oldsymbol{lpha}} \min_{i} rac{(oldsymbol{lpha} \cdot \mathbf{h}(x_i))y_i}{||oldsymbol{lpha}|| \, ||\mathbf{h}(x_i)||}$$
 (i)

$$||\boldsymbol{\alpha}||_1 \doteq \sum_t |\alpha_t|, \quad ||\mathbf{h}(x)||_{\infty} \doteq \max_t |h_t(x)|.$$

The explicit goal of SVM is also (i), where  $h=\Phi$ , and  $\alpha=w$ :

$$||\boldsymbol{\alpha}||_2 \doteq \sqrt{\sum_t \alpha_t^2}, \quad ||\mathbf{h}(x)||_2 \doteq \sqrt{\sum_t h_t(x)^2} \;.$$

#### **Differences**

- Both SVM and AdaBoost aim to find a linear combination in a high dimensional space But, the norms used to define the margin are different in the two cases and the precise goal is also different
- Others:
- Different norms can result in very different margins especially in high dimensional input spaces
- · The computational requirements are also different

SVM : Quadratic, AdaBoost : Linear

# **Differences**

A different approach is used to search efficiently

SVM uses Kernels, while AdaBoost relies on a weak learning algorithm

The re-weighting of the examples changes the distribution, guiding the weak learner to find different correlated coordinates

Selecting the appropriate Kernel vs. Selecting an appropriate weak learning algorithm

# Outline

- Introduction
- AdaBoost
- Error Analysis
- · Relationship to SVM

Literature

# **Related Papers**

- A short introction to boosting Freund and shapire 1999
- boosting and SVM one class (Rätsch, Schölkopf, Mika & Müller, 2000)
- Marginal Boosting (maximizing the margin ) (Rätsch & Warmuth, 2001)

# Links

- http://www.boosting.org/tutorial.html
- http://www.cs.princeton.edu/~schapire/boost.html