| bibliography
welcome
science
frog on hand
cv
private
@InProceedings{ba_pe_ba_gi_iv:08,
  author =       {Claus Bahlmann and Martin Pellkofer and
    		 Jan Giebel and Gregory Baratoff},
  title =        {Multi-Modal Speed Limit Assistants: Combining Camera and GPS Maps},
  booktitle =     {IEEE Intelligent Vehicles Symposium (IV 2008)},
  year =         2008,
}

@InProceedings{ke_sp_ba_ba_gi_iv:08,
  author =       {Christoph Gustav Keller and Christoph Sprunk and 
  			Claus Bahlmann and Jan Giebel and Gregory Baratoff},
  title =        {Real-Time Recognition of U.S. Speed Signs},
  booktitle =     {IEEE Intelligent Vehicles Symposium (IV 2008)},
  year =         2008,
}

@Article{ba_pr:06,
  author =       {Claus Bahlmann},
  title =        {Directional Features in Online Handwriting
                  Recognition},
  abstract =     {The selection of valuable features is crucial in
                  pattern recognition. In this paper we deal with the
                  issue that part of features originate from
                  directional instead of common linear data. Both for
                  directional and linear data a theory for a
                  statistical modeling exists. However, none of these
                  theories gives an integrated solution to problems,
                  where linear and directional variables are to be
                  combined in a single, multivariate probability
                  density function. We describe a general approach for
                  a unified statistical modeling, given the constraint
                  that variances of the circular variables are
                  small. The method is practically evaluated in the
                  context of our online handwriting recognition system
                  frog on hand and the so-called tangent slope angle
                  feature. Recognition results are compared with two
                  alternative modeling approaches. The proposed
                  solution gives significant improvements in
                  recognition accuracy, computational speed and memory
                  requirements.},
  journal =      {Pattern Recognition},
  month =        jan,
  number =       1,
  volume =       39,
  year =         2006
}					

@InProceedings{ba_zh_ra_pe_ko_iv:05,
  author =       {Claus Bahlmann and Ying Zhu and Visvanathan Ramesh
                  and Martin Pellkofer and Thorsten Koehler},
  title =        {A System for Traffic Sign Detection, Tracking, and
                  Recognition Using Color, Shape, and Motion
                  Information},
  abstract =     {This paper describes a computer vision based system
                  for real-time robust traffic sign detection,
                  tracking, and recognition. Such a framework is of
                  major interest for driver assistance in an
                  intelligent automotive cockpit environment. The
                  proposed approach consists of two components. First,
                  signs are detected using a set of Haar wavelet
                  features obtained from Ada- Boost training. Compared
                  to previously published approaches, our solution
                  offers a generic, joint modeling of color and shape
                  information without the need of tuning free
                  parameters. Once detected, objects are efficiently
                  tracked within a temporal information propagation
                  framework. Second, classification is performed using
                  Bayesian generative modeling.Making use of the
                  tracking information, hypotheses are fused over
                  multiple frames. Experiments show high detection and
                  recognition accuracy and a frame rate of
                  approximately 10 frames per second on a standard
                  PC.},
  booktitle =     {IEEE Intelligent Vehicles Symposium (IV 2005)},
  year =         2005,

}

@PhdThesis{ba_phd:05,
  author =       {Claus Bahlmann},
  title =        {Advanced Sequence Classification Techniques Applied
                  to Online Handwriting Recognition},
  abstract =     {The term handwriting recognition (HWR) denotes the
                  process of transforming a language, which is
                  represented in its spatial form of graphical marks,
                  into its symbolic representation. Online HWR
                  performs this task concurrently to the writing
                  process. The present thesis studies highaccuracy
                  recognition methods applied to online HWR. Those
                  methods have been implemented within the writer
                  independent online HWR system frog on hand (Freiburg
                  RecOGnition of ON-line HANDwriting). In online HWR,
                  data are typically represented as vector
                  sequences. In addition to HWR, vector sequence data
                  appear in a number of additional pattern recognition
                  problems, for instance, in speech recognition,
                  genome processing, financial and medical
                  applications, and robotics. For those problems,
                  designing classifiers that directly address the
                  data's natural representation can greatly improve
                  the recognition accuracy, compared to a potential
                  pre-applied transformation to vector space
                  data. Beside introducing novel online HWR
                  approaches, a concern of this thesis is also to
                  develop broadly applicable pattern recognition
                  techniques, which are generic to this bouquet of
                  sequence data problems. Emphasis is placed on
                  classification. This thesis describes two
                  complementary classification methods, one of them
                  (CSDTW) falling into the so-called generative, the
                  other one (SVM-GDTW) into the so-called
                  discriminative classification category. The
                  generative CSDTW (cluster generative statistical
                  dynamic time warping) is a scalable sequence
                  classification, which aims at holistically combining
                  sequence cluster analysis and statistical
                  modeling. Contrary to previous approaches, these two
                  aspects are embedded in a single feature space and
                  use a closely related distance measure. As will be
                  shown, this combined modeling leads to very accurate
                  HWR results. Particularly interesting in the context
                  of statistical classification, like CSDTW, is the
                  modeling of so-called directional data (i.e., data
                  which corresponds to a direction, thus, in 2D is
                  distributed on the unit circle; opposed to
                  directional data, linear data is distributed along
                  the real line). In online HWR directional data
                  appear as a valuable feature by means of the angular
                  pen trace direction. This thesis describes a unified
                  modeling of directional and linear data within one
                  probability density function (PDF): the multivariate
                  semi-wrapped Gaussian PDF. This modeling applied to
                  CSDTW classification shows significant improvements
                  in recognition accuracy, computational speed and
                  memory requirements, compared to commonly employed
                  modeling approaches. As an additional resource for
                  the CSDTW sequence modeling, a (dis-) similarity
                  measure between a pair of CSDTW models is
                  described. Such a measure can be used as a stop
                  criterion in the iterative CSDTW training, as a
                  speed-up in classification, a distance measure in
                  the context of CSDTW model clustering or as an
                  optimization criterion for a discriminative CSDTW
                  training. Likewise to the CSDTW scoring, this (dis-)
                  similarity computation uses dynamic programming as
                  algorithmic framework and can thus be easily added
                  to a given classification implementation. It is
                  based on the Bayes probability of error, and, hence,
                  can be utilized as a tool to interpret
                  misclassifications. Experiments show a high
                  correlation of similar and frequently confused class
                  pairs. As a complementary approach to the widely
                  employed generative sequence modeling, a
                  discriminative strategy of fusing dynamic time
                  warping (DTW) and support vector machines (SVM) is
                  developed: SVM-GDTW. This fusion is realized by a
                  formulation of a novel SVM kernel, called the
                  Gaussian dynamic time warping (GDTW) kernel. As this
                  sequence classification approach is a pure
                  discriminative one, it does not assume a model for
                  the generative class conditional densities. Instead,
                  it addresses the direct creation of class
                  boundaries. This thesis compares CSDTW and SVM-GDTW
                  in terms of theoretical background, accuracy, and
                  computational complexity. While CSDTW being the more
                  efficient approach, SVM-GDTW holds much potential
                  for future research as an instance of the relatively
                  recent SVM based sequence classification. The
                  practical impact of the developed handwritten
                  character recognition is demonstrated by an
                  implementation on a Linux Compaq iPAQ PDA
                  environment.},
  address =      {Institut f\"ur Informatik},
  institution =  {Al\-bert-Lud\-wigs-Uni\-ver\-sit\"at Frei\-burg},
  school =       {Al\-bert-Lud\-wigs-Uni\-ver\-sit\"at Frei\-burg},
  publisher =    {Shaker-Verlag},
  year =         {2005},
  url =          {http://www.shaker.de/Online-Gesamtkatalog/Details.asp?ID=837419&CC=17185&ISBN=3-8322-4535-9&Reihe=15&ReiheUR=-2&start=1},
  isbn =         {3-8322-4535-9}
}

@InProceedings{ha_ba_dagm:04,  
  author =       {Bernard Haasdonk and Claus Bahlmann},
  title =        {Learning with Distance Substitution Kernels},
  booktitle =    {26th Pattern Recognition Symposium of the German
                  Association for Pattern Recognition (DAGM 2004)},
  abstract =     {During recent years much effort has been spent in
                  incorporating problem specific a-priori knowledge
                  into kernel methods for machine learning. A common
                  example is a-priori knowledge given by a distance
                  measure between objects. A simple but effective
                  approach for kernel construction consists of
                  substituting the Euclidean distance in ordinary
                  kernel functions by the problem specific distance
                  measure. We formalize this distance substitution
                  procedure and investigate theoretical and empirical
                  effects. In particular we state criteria for
                  definiteness of the resulting kernels. We
                  demonstrate the wide applicability by solving
                  several classification tasks with
                  SVMs. Regularization of the kernel matrices can
                  additionally increase the recognition accuracy.},
  year =         2004,
  address =      {T\"ubingen, Germany},
  publisher =    {Springer Verlag}
}

@Article{ba:bu:tpami04,
  author =       {Claus Bahlmann and Hans Burkhardt},
  title =        {The Writer Independent Online Handwriting
                  Recognition System \emph{frog on hand} and Cluster
                  Generative Statistical Dynamic Time Warping},
  journal =      {IEEE Trans. Pattern Anal. and Mach. Intell.},
  month =        mar,
  year =         2004,
  volume =       26,
  number =       3,
  pages =        {299--310},
  abstract =     {In this paper, we give a comprehensive description
                  of our writer-independent online handwriting
                  recognition system frog on hand. The focus of this
                  work concerns the presentation of the
                  classification/training approach, which we call
                  cluster generative statistical dynamic time warping
                  (CSDTW). CSDTW is a general, scalable, HMM-based
                  method for variable-sized, sequential data that
                  holistically combines cluster analysis and
                  statistical sequence modeling. It can handle general
                  classification problems that rely on this sequential
                  type of data, e.g., speech recognition, genome
                  processing, robotics, etc. Contrary to previous
                  attempts, clustering and statistical sequence
                  modeling are embedded in a single feature space and
                  use a closely related distance measure. We show
                  character recognition experiments of frog on hand
                  using CSDTW on the UNIPEN online handwriting
                  database. The recognition accuracy is significantly
                  higher than reported results of other handwriting
                  recognition systems. Finally, we describe the
                  real-time implementation of frog on hand on a Linux
                  Compaq iPAQ embedded device.},
  url =
                  {ftp://ftp.informatik.uni-freiburg.de/papers/lmb/ba_bu_tpami04.pdf},
  keywords =     {Pattern recognition, handwriting analysis, Markov
                  processes, dynamic programming, clustering},

}

@InProceedings{ba:ha:bu:iwfhr02,
  author =       {Claus Bahlmann and Bernard Haasdonk and Hans
                  Burkhardt},
  title =        {On-line Handwriting Recognition with Support Vector
                  Machines---A Kernel Approach},
  pages =        {49--54},
  booktitle =    {Proc. 8th Int. Workshop Front. Handwriting 
                  Recognition (IWFHR)}, 
  year =         2002,  
  url =
                  {ftp://ftp.informatik.uni-freiburg.de/papers/lmb/ba_ha_bu_iwfhr02.pdf},
  abstract =     {In this contribution we describe a novel
                  classification approach for on-line handwriting
                  recognition. The technique combines dynamic time
                  warping (DTW) and support vector machines (SVMs) by
                  establishing a new SVM kernel. We call this kernel
                  \emph{Gaussian DTW (GDTW) kernel}. This kernel
                  approach has a main advantage over common HMM
                  techniques. It does not assume a model for the
                  generative class conditional densities. Instead, it
                  directly addresses the problem of discrimination by
                  creating class boundaries and thus is less sensitive
                  to modeling assumptions. By incorporating DTW in the
                  kernel function, general classification problems
                  with variable-sized sequential data can be
                  handled. In this respect the proposed method can be
                  straightforwardly applied to all classification
                  problems, where DTW gives a reasonable distance
                  measure, e.g.~speech recognition or genome
                  processing. We show experiments with this kernel
                  approach on the UNIPEN handwriting data, achieving
                  results comparable to an HMM-based technique. }
}

@InProceedings{ba:bu:icdar01,
  author =       {Claus Bahlmann and Hans Burkhardt},
  title =        {Measuring {HMM} Similarity with the {B}ayes
                  Probability of Error and its Application to Online
                  Handwriting Recognition},
  booktitle =    {Proc. 6th Int. Conf. Doc. Anal. Recognition (ICDAR)},
  year =         2001,
  abstract =     {We propose a novel similarity measure for Hidden
                  Markov Models (HMMs). This measure calculates the
                  Bayes probability of error for HMM state
                  correspondences and propagates it along the Viterbi
                  path in a similar way to the HMM Viterbi scoring. It
                  can be applied as a tool to interpret
                  misclassifications, as a stop criterion in iterative
                  HMM training or as a distance measure for HMM
                  clustering. The similarity measure is evaluated in
                  the context of online handwriting recognition on
                  lower case character models which have been trained
                  from the UNIPEN database. We compare the
                  similarities with experimental classifications. The
                  results show that similar and misclassified class
                  pairs are highly correlated. The measure is not
                  limited to handwriting recognition, but can be used
                  in other applications that use HMM based methods. },
  pages =        {406--411},
  url =          {ftp://ftp.informatik.uni-freiburg.de/papers/lmb/ba_bu_icdar01.pdf}
}

@Article{ba:he:ri:pr99,
  author =       {Claus Bahlmann and Gunther Heidemann and Helge
                  Ritter},
  title =        {Artificial Neural Networks for Automated Quality
                  Control of Textile Seams},
  journal =      {Pattern Recognition},
  volume =       32,
  month =        jun,
  abstract =     {We present a method for an automated quality control
                  of textile seams, which is aimed to establish a
                  standardized quality measure and to lower costs in
                  manufacturing. The system consists of a suitable
                  image acquisition setup, an algorithm for locating
                  the seam, a feature extraction stage and a neural
                  network of the self-organizing map type for feature
                  classification. A procedure to select an optimized
                  feature set carrying the information relevant for
                  classification is described.},
  url =
                  {ftp://ftp.informatik.uni-freiburg.de/papers/lmb/ba_he_ri_pr99.ps.gz},
  keywords =     {neural networks, self-organizing feature maps
                  (SOFM), textile seams, quality control, feature
                  selection },
  number =       6,
  pages =        {1049--1060},
  year =         1999
}

@Mastersthesis{bahlmann:97,
  title =        {{K\"unstliche Neuronale Netze zur optischen
                  Qualit\"atskontrolle textiler N\"ahte}},
  author =       {Claus Bahlmann},
  month =        may,
  year =         1997,
  school =       {Universit{\"a}t Bielefeld},
  address =      {Technische Fakult{\"a}t, AG Neuroinformatik},
  url =
                  {http://lmb.informatik.uni-freiburg.de/people/bahlmann/data/bahlmann-seams1997.pdf},
}

@MastersThesis{simon:03,
  author =       {Kai Simon},
  title =        {{E}rkennung von handgeschriebenen {W}\"ortern mit
                  {CSDTW}},
  abstract =     {Am LMB werden seit mehreren Jahren Untersuchungen
                  zur on-line Zeichenerkennung durchgeührt. Ein
                  System, welches innerhalb dieser Forschungsarbeiten
                  entwickelt werden konnte ist das CSDTW (Cluster
                  generative Statistical Dynamic Time Warping). CSDTW
                  grü ndet auf einer clusterbasierten, generativen,
                  statistischen Modellierung der Schriftzeichen,
                  welche mittels DTW-Verfahren zur Klassifikation
                  eines unbekannten Schriftzeichens herangezogen
                  werden. Diesbezüglich kommt eine maximum-aposteriori
                  (MAP) bzw. maximum-likelihood (ML) Klassifikation
                  zum Einsatz, in der die
                  Produktionswahrscheinlichkeit für die in Frage
                  kommenden statistischen Modelle maximiert
                  wird. Mithilfe diese Systems konnten Fehlerraten von
                  etwa 10\% für isoliert geschriebene Kleinbuchstaben,
                  auf dem in der Handschriftforschung
                  gebräuchlichen "UNIPEN"-Benchmark erreicht
                  werden. Dies ist ein im internationalen Vergleich
                  hervorragende Quote. Der vorliegende Vortrag
                  beschäftigt sich mit der Erweiterung des Systems
                  im Hinblick auf die Worterkennung. Hierzu werden
                  Vorverarbeitungstechniken vorgestellt, die eine
                  Merkmalsextraktion anhand von geschriebenen
                  Wörten ermöglichen. Schliefllich erfolgt eine
                  Erweiterung von CSDTW zu Erkennung von
                  Zeichensequenzen. Zur Einschränkung des Suchraums
                  kommen Viterbi- bzw. Strahlsuchstrategien und
                  Pruningtechniken, wie sie im Zusammenhang mit
                  "Hidden Markov Modellen" (HMMs) bekannt sind, zum
                  Einsatz. Zusätzlich wird linguistisches
                  Kontextwissen der zu modellierenden Sprachen in Form
                  eines Lexikon hinzugezogen. Zum Schluss werden die
                  erzielten Klassifikationsraten auf dem UNIPEN
                  Datensatz vorgestellt und diskutiert.},
  year =         2003,
  language =     german,
  address =      {Institut f\"ur Informatik},
  url =          {http://lmb.informatik.uni-freiburg.de/},
  school =       {Al\-bert-Lud\-wigs-Uni\-ver\-sit\"at Frei\-burg},

}

@MastersThesis{simon:02,
  author =       {Kai Simon},
  title =        {{V}orverarbeitung und {M}erkmalsextraktion in der
                  {O}n\-line-{H}andschrifterkennung},
  abstract =     {Für eine erfolgreiche Klassifikation eines
                  Schriftzuges ist die Gewinnung von geeigneten,
                  gegenüber Translation, Rotation und Skalierung
                  invarianter Merkmale notwendig. Damit eine robuste
                  Merkmalsextraktion erfolgen kann, werden die diskret
                  abgetasteten Ortskoordinaten zuvor mithilfe einer
                  Splinekurve geglättet. Bei der Glättung kommen
                  B-Splines zur Anwendung, welche es ermöglichen,
                  Spitzen in den Abtastpunkten durch Knicke zu
                  modellieren. Somit bleiben auch nach einer Glättung
                  wichtige Charakteristiken der Abtastdate n erhalten
                  und können in eine spätere Merkmalsberechnung
                  einfließen. Nach dem Erzeugen der Splinekurve,
                  erfolgt eine Neuabtastung. Hierbei sollen die neu
                  abgetasteten Punkte äquidistant bezüglich der Kurve
                  sein. Um dies zu erreichen, wird die Splinekurve
                  approximativ nach Bogenlänge umparametrisiert. Die
                  Umparametrisierung stellt einen hohen Rechenaufwand
                  dar, welcher bei der Online-Handschrifterkennung
                  nicht akzeptabel ist. Es wird eine schnellere
                  Alternative vorgestellt, welche jedoch eine größere
                  Ungenauigkeit in der Äquidistanz der neu
                  abgetasteten Punkte zur Folge hat. Im Anschluss
                  werden die invarianten Merkmale 'signed ratio of
                  tangents' und 'normalized curvature' für die neu
                  abgetasteten Punkte berechnet. Diese Berechnungen
                  erfolgen direkt auf Grundlage der Splinedarstellung,
                  wodurch, im Gegensatz zu einer Interpolation, eine
                  höhere Rechengenauigkeit gewährleistet ist.},
  language =     german,
  address =      {Institut f\"ur Informatik},
  url =          {http://lmb.informatik.uni-freiburg.de/},
  school =       {Al\-bert-Lud\-wigs-Uni\-ver\-sit\"at Frei\-burg},
  type =         {Student's Thesis},
  year =         2002,
}

@MastersThesis{bockhorn:00,
  author =       {Dirk Bockhorn},
  title =        {{B}estimmung und {U}ntersuchung von
                  {S}ignifikanzgewichtungen f\"ur die {E}rkennung von
                  handgeschriebenen {B}uchstaben},
  language =     {german},
  address =      {Institut f\"ur Informatik},
  url =          {http://lmb.informatik.uni-freiburg.de/},
  school =       {Al\-bert-Lud\-wigs-Uni\-ver\-sit\"at Frei\-burg},
  year =         2000,
  type =         {Diploma thesis},
}

@MastersThesis{triebel:99,
  author =       {Rudolph Triebel},
  title =        {Automatische Erkennung von handgeschriebenen Worten
                  mithilfe des Level Building Algorithmus},
  address =      {Institut f\"ur Informatik},
  url =          {http://lmb.informatik.uni-freiburg.de/},
  school =       {Al\-bert-Lud\-wigs-Uni\-ver\-sit\"at Frei\-burg},
  year =         1999,
  month =        dec,
  language =     {german}
}



last modified Friday, October 21, 2005 by Claus Bahlmann

| welcome | science | frog on hand | curriculum vitae | private | contact | search |