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Bayesian Classification
The generative approach

Bayesian Classification
The generative approach

1. Estimate class conditional
density models P (X|l) for
each class l

2. Choose class with high-
est posterior probability by
Bayes’ rule

P (l|T ) =
P (T |l)P (l)

P (T )
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Support Vector Machine (SVM)
The Discriminative Approach (Two-class Case)

Support Vector Machine (SVM)
The Discriminative Approach (Two-class Case)

• Discrimination boundary has widest margin to “closest” training
examples (support vectors)

• Non-linear extension by implicit problem transformation into higher
dimensional space by the “kernel trick”

SVM GUI by (Gunn, 1998)
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Support Vector Machine (SVM)
The Discriminative Approach (Two-class Case)

Kernel:
K (T , P )

SVM classification:

Ŝ (T ) = sign

(

∑

i

αiSiK (T , Pi) + b

)

SVM training: Determine αi, that maximize the objective function

LD =
∑

i

αi −
1

2

∑

i,j

αiαjSiSjK (Pi, Pj)

with the constraints

0 ≤ αi ≤ C and
∑

i

αiSi = 0
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Support Vector Machine (SVM)
Kernels

Support Vector Machine (SVM)
Kernels

Vectors Sequences (On-line handwriting data!)

Pattern
exam-
ples T = (7, 5, 8)

τ

P = (9, 3, 4)
τ

T = [7, 5, 8]

P = [7, 5, 5, 8]

Kernel
example
K(T , P )

Gaussian kernel

K (T , P ) = exp
(

−γ ‖T − P‖
2
)

?
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(however, GDTW cannot be proven to be
positive definite;
but, positive definite in (many) practical
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Dynamic Time WarpingDynamic Time Warping
Purpose: Aligning temporally distorted patterns

T =
[

t1, . . . , tNT

]

R =
[

r1, . . . , rNR

]

and compute a distance measure
DDTW (T ,R)

Warping path: (for aligning corresponding
samples)

φ : {1, . . . , N} → ({1, . . . , NT } × {1, . . . , NR})

DTW distance:

DDTW (T ,R) =
1

N

N
∑

n=1

∥

∥

∥

∥

tφ∗
T (n)

− rφ∗
R(n)

∥

∥

∥

∥

2
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Simulations and Results
The Database

Simulations and Results
The Database

• UNIPEN Train-R01/V07 corpus

• no cleaning from poor quality/mislabeled characters

UNIPEN section number of samples

1a (digits) 16000
1b (upper case characters) 28000
1c (lower case characters) 61000
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Simulations and Results
Feature Selection

Simulations and Results
Feature Selection

Feature vector sequence T =
[

t1, . . . , tNT

]

Feature vector tn = (x̃n, ỹn, θn)τ

1. normalized x-coordinate x̃n = xn−µx

σy

2. normalized y-coordinate ỹn =
yn−µy

σy

3. tangent slope angle

θn = ang
(

∆nx +
√
−1 · ∆ny

)
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Gaussian DTW (GDTW) Kernel
Examples

Gaussian DTW (GDTW) Kernel
Examples

K (T ,Pj) = exp (−γDDTW (T ,Pj))
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Error Rates of Two-class ProblemsError Rates of Two-class Problems

1c section (lower case characters),
randomly chosen 67 % Train / 33 % Test set

Difficulty Character pairs # Tr.-Expls. # SVs ESVM−GDTW ESDTW [BB01]

easy
a ↔ b 3540 298 0.5 % 0.8 %

d ↔ m 2595 334 0.1 % 0.4 %

difficult

c ↔ e 5088 351 3.7 % 7.2 %

u ↔ v 2214 397 9.2 % 6.8 %

y ↔ g 2088 358 11.2 % 7.7 %

b ↔ h 2524 275 2.3 % 3.2 %
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easy
a ↔ b 3540 298 0.5 % 0.8 %

d ↔ m 2595 334 0.1 % 0.4 %

difficult

c ↔ e 5088 351 3.7 % 7.2 %

u ↔ v 2214 397 9.2 % 6.8 %

y ↔ g 2088 358 11.2 % 7.7 %

b ↔ h 2524 275 2.3 % 3.2 %
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Multi-class SVMMulti-class SVM

DAG (directed acyclic graph)-SVM:
combining K · (K − 1) /2 two-class SVMs into one K-class-SVM
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figure taken from (Platt, 2000)
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Example of a Multi-class SVM-GDTWExample of a Multi-class SVM-GDTW

Matlab demo
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Error Rates of Multi-class ProblemsError Rates of Multi-class Problems
1c section (lower case characters)

Approach Error rate E UNIPEN Database Type
(average of 5 runs)

DAG-SVM-GDTW
Train-R01/V07

11.5 % rand. chosen 10 %/10 % Train/Test
12.0 % rand. chosen 20 %/20 % Train/Test

SDTW [BB01]

Train-R01/V07
13.0 % rand. chosen 10 %/10 % Train/Test
11.4 % rand. chosen 20 %/20 % Train/Test
9.7 % rand. chosen 67 %/33 % Train/Test

MLP [PLG01] 14.4 % DevTest-R02/V02

HMM-NN hybrid [GADG01] 13,2 % Train-R01/V07

HMM [HLB00] 14,1 %
Train-R01/V06

4 % ”bad characters” removed
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ComplexityComplexity

multi-class, 1c section (lower case characters),
randomly chosen 10 % Train / 10 % Test set

Order Experiments
on AMD Athlon
1200 MHz

Time

Training O
(

M2 · Tkernel

)

81 h

Classification (K − 1) · Ms · Tkernel 2.5 sec

Memory K·(K−1)
2 · MS · Ñ · F · sizeof(float) 17.5 MByte

M : total number of training samples
K: number of classes
Ms: average number of support vectors
Ñ : average sequence length
F : number of features
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ConclusionConclusion

• A discriminative classifier for sequences:
SVM with a Gaussian DTW kernel (SVM-GDTW)

• Examples, simulations and results

– Small training sets: Significant decrease of error rate
– Large training sets: Comparable error rates

• Remaining potential for improvement

• Just a small number of model parameters have to be adjusted

• Complexity of SVM-GDTW quite high

• Kernel is not positive definite and thus global optimality of the training
cannot be guaranteed.

• Suitable for all problems with sequences (speech, genome processing,
...)
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Future WorkFuture Work

• Character recognition −→ word recognition

• Improving computational speed

• Investigating non-positive definiteness

• Investigating additional kernels

• Hybrid of generative / discriminative classifier
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Error Rates of Multi-class ProblemsError Rates of Multi-class Problems
UNIPEN section Approach Error rate E UNIPEN Database Type

1a (digits)

DAG-SVM-GDTW
Train-R01/V07

3.8 % rand. chosen 20 %/20 % Train/Test
3.7 % rand. chosen 40 %/40 % Train/Test

SDTW [BB01]

Train-R01/V07
4.5 % rand. chosen 20 %/20 % Train/Test
3.2 % rand. chosen 40 %/40 % Train/Test

MLP [PLG01] 3.0 % DevTest-R02/V02

HMM [HLB00] 3.2 %
Train-R01/V06

4 % ”bad characters” removed

1b (upper case)

DAG-SVM-GDTW
Train-R01/V07

7.4 % rand. chosen 20 %/20 % Train/Test
7.3 % rand. chosen 40 %/40 % Train/Test

SDTW [BB01]
Train-R01/V07

10.0 % rand. chosen 20 %/20 % Train/Test
8.0 % rand. chosen 40 %/40 % Train/Test

HMM [HLB00] 6.4 %
Train-R01/V06

4 % ”bad characters” removed

1c (lower case)

DAG-SVM-GDTW
Train-R01/V07

11.5 % rand. chosen 10 %/10 % Train/Test
12.0 % rand. chosen 20 %/20 % Train/Test

SDTW [BB01]

Train-R01/V07
13.0 % rand. chosen 10 %/10 % Train/Test
11.4 % rand. chosen 20 %/20 % Train/Test
9.7 % rand. chosen 67 %/33 % Train/Test

MLP [PLG01] 14.4 % DevTest-R02/V02
HMM-NN hybrid [GADG01] 13,2 % Train-R01/V07

HMM [HLB00] 14,1 %
Train-R01/V06

4 % ”bad characters” removed
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