On-line Handwriting Recognition with Support Vector Machines— A Kernel Approach

Claus Bahlmann, Bernard Haasdonk and Hans Burkhardt,

Computer Science Department, Albert-Ludwigs-University Freiburg, Germany

August 6, 2002

Dipl.-Inf. Claus Bahlmann, Computer Science Department, Albert-Ludwigs-University Freiburg, Germany

- Review of classification techniques
 - (Generative) Bayesian classification
 - (Discriminative) Support Vector Machine (SVM) classification
- Our new SVM-kernel for sequences: the Gaussian dynamic time warping (GDTW) kernel
- Examples, simulations and results with UNIPEN data
 - two-class problems
 - multi-class problems

- Review of classification techniques
 - (Generative) Bayesian classification
 - (Discriminative) Support Vector Machine (SVM) classification
- Our new SVM-kernel for sequences: the Gaussian dynamic time warping (GDTW) kernel
- Examples, simulations and results with UNIPEN data
 - two-class problems
 - multi-class problems

- Review of classification techniques
 - (Generative) Bayesian classification
 - (Discriminative) Support Vector Machine (SVM) classification
- Our new SVM-kernel for sequences: the Gaussian dynamic time warping (GDTW) kernel
- Examples, simulations and results with UNIPEN data
 - two-class problems
 - multi-class problems

- Review of classification techniques
 - (Generative) Bayesian classification
 - (Discriminative) Support Vector Machine (SVM) classification
- Our new SVM-kernel for sequences: the Gaussian dynamic time warping (GDTW) kernel
- Examples, simulations and results with UNIPEN data
 - two-class problems
 - multi-class problems

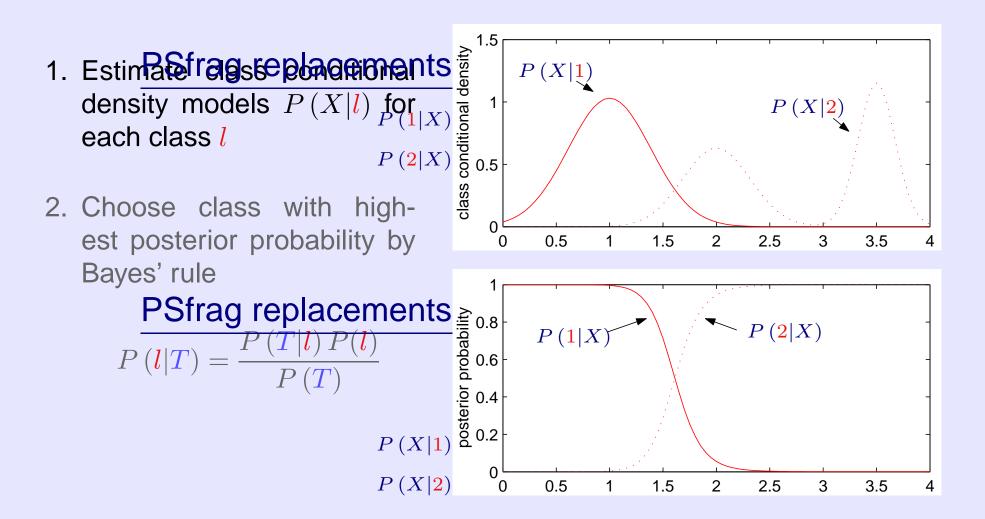
- Review of classification techniques
 - (Generative) Bayesian classification
 - (Discriminative) Support Vector Machine (SVM) classification
- Our new SVM-kernel for sequences: the Gaussian dynamic time warping (GDTW) kernel
- Examples, simulations and results with UNIPEN data
 - two-class problems
 - multi-class problems

- Review of classification techniques
 - (Generative) Bayesian classification
 - (Discriminative) Support Vector Machine (SVM) classification
- Our new SVM-kernel for sequences: the Gaussian dynamic time warping (GDTW) kernel
- Examples, simulations and results with UNIPEN data
 - two-class problems
 - multi-class problems

- Review of classification techniques
 - (Generative) Bayesian classification
 - (Discriminative) Support Vector Machine (SVM) classification
- Our new SVM-kernel for sequences: the Gaussian dynamic time warping (GDTW) kernel
- Examples, simulations and results with UNIPEN data
 - two-class problems
 - multi-class problems

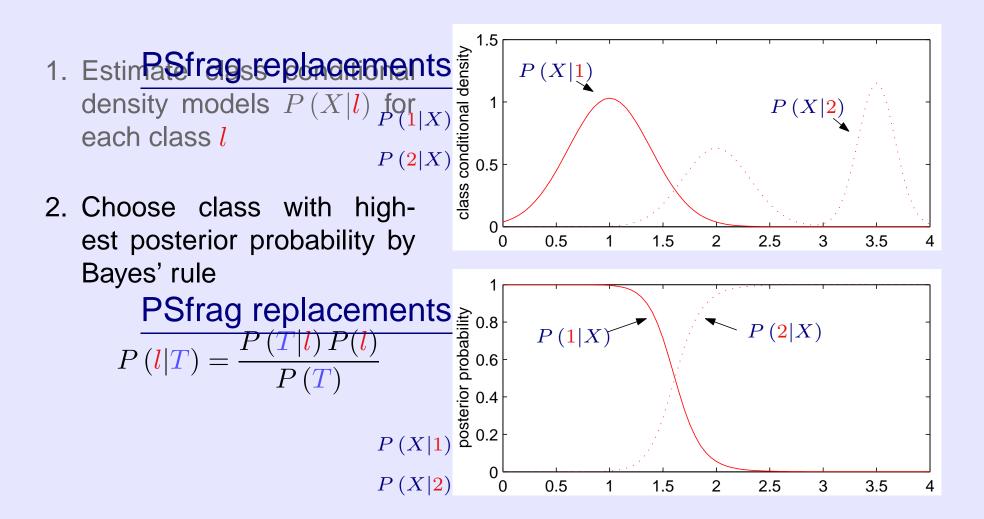
Bayesian Classification

The generative approach



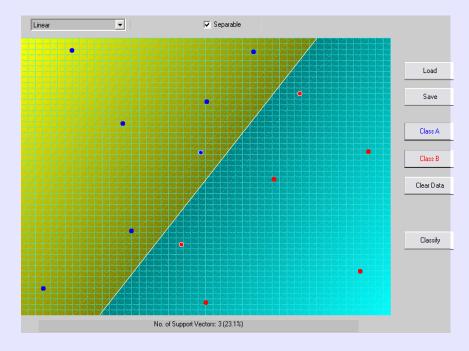
Bayesian Classification

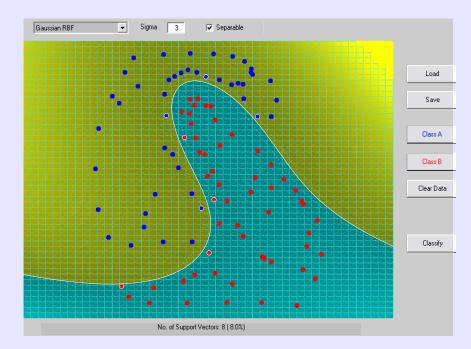
The generative approach



The Discriminative Approach (Two-class Case)

- Discrimination boundary has *widest margin* to "closest" training examples (*support vectors*)
- Non-linear extension by implicit problem transformation into higher dimensional space by the "kernel trick"





SVM GUI by (Gunn, 1998)

The Discriminative Approach (Two-class Case)

Kernel:

K(T,P)

SVM classification:

$$\hat{S}(T) = \operatorname{sign}\left(\sum_{i} \alpha_{i} S_{i} K(T, P_{i}) + b\right)$$

SVM training: Determine α_i , that maximize the objective function

$$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j S_i S_j K(P_i, P_j)$$

with the constraints

$$0 \le \alpha_i \le C$$
 and $\sum_i \alpha_i S_i = 0$

The Discriminative Approach (Two-class Case)

Kernel:

K(T,P)

SVM classification:

$$\hat{S}(T) = \operatorname{sign}\left(\sum_{i} \alpha_{i} S_{i} K(T, P_{i}) + b\right)$$

SVM training: Determine α_i , that maximize the objective function

$$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j S_i S_j K(P_i, P_j)$$

with the constraints

$$0 \le \alpha_i \le C$$
 and $\sum_i \alpha_i S_i = 0$

The Discriminative Approach (Two-class Case)

Kernel:

K(T,P)

SVM classification:

$$\hat{S}(T) = \operatorname{sign}\left(\sum_{i} \alpha_{i} S_{i} K(T, P_{i}) + b\right)$$

SVM training: Determine α_i , that maximize the objective function

$$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j S_i S_j K(P_i, P_j)$$

with the constraints

$$0 \le \alpha_i \le C$$
 and $\sum_i \alpha_i S_i = 0$

The Discriminative Approach (Two-class Case)

Kernel:

K(T,P)

SVM classification:

$$\hat{S}(T) = \operatorname{sign}\left(\sum_{i} \alpha_{i} S_{i} K(T, P_{i}) + b\right)$$

SVM training: Determine α_i , that maximize the objective function

$$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j S_i S_j K(P_i, P_j)$$

with the constraints

$$0 \le \alpha_i \le C$$
 and $\sum_i \alpha_i S_i = 0$

Dipl.-Inf. Claus Bahlmann, Computer Science Department, Albert-Ludwigs-University Freiburg, Germany

Kernels

	Vectors	Sequences (On-line handwriting data!)
Pattern		
exam-		
ples	$T = (7, 5, 8)^{\tau}$	$\mathcal{T} = [7, 5, 8]$
	$P = (9,3,4)^{\tau}$	${\cal P} ~=~ [7,5,5,8]$
Kernel	Gaussian kernel	
example		
K(T, P)	$K(T, P) = \exp\left(-\gamma \ T - P\ ^2 ight)$?

Kernels

	Vectors	Sequences (On-line handwriting data!)		
Pattern				
exam-				
ples	$T = (7, 5, 8)^{\tau}$	$\mathcal{T} = [7, 5, 8]$		
	$P = (9,3,4)^{\tau}$	$\mathcal{P} = [7, 5, 5, 8]$		
Korpol	Caucaian karnal	Coupsian DTM/ (CDTM/) karnal		
Kernel	Gaussian kernel	Gaussian DTW (GDTW) kernel		
example $K(T, P)$	$K\left(T,P ight)=\exp\left(-\gamma\left\ T-P ight\ ^{2} ight)$	$K(\mathcal{T}, \mathcal{P}) = \exp\left(-\gamma D_{\text{DTW}}\left(\mathcal{T}, \mathcal{P}\right)\right)$		

Kernels

	Vectors	Sequences (On-line handwriting data!)		
Pattern				
exam-				
ples	$T = (7, 5, 8)^{\tau}$	\mathcal{T} = $[7, 5, 8]$		
	$P = (9,3,4)^{\tau}$	$\mathcal{P} = [7, 5, 5, 8]$		
Kernel	Gaussian kernel	Gaussian DTW (GDTW) kernel		
example $K(T, P)$	$K(T, P) = \exp\left(-\gamma \ T - P\ ^2\right)$	$K(\mathcal{T}, \mathcal{P}) = \exp\left(-\gamma D_{\text{DTW}}(\mathcal{T}, \mathcal{P})\right)$		
		(however, GDTW cannot be proven to be positive definite;		

Kernels

	Vectors	Sequences (On-line handwriting data!)		
Pattern				
exam-				
ples	$T = (7, 5, 8)^{\tau}$	$\mathcal{T} = [7, 5, 8]$		
	$P = (9,3,4)^{\tau}$	$\mathcal{P} = [7, 5, 5, 8]$		
Kernel	Gaussian kernel	Gaussian DTW (GDTW) kernel		
example $K(T, P)$	$K\left(T, P ight) = \exp\left(-\gamma \left\ T - P ight\ ^2 ight)$	$K(\mathcal{T}, \mathcal{P}) = \exp\left(-\gamma D_{\text{DTW}}(\mathcal{T}, \mathcal{P})\right)$		
		(however, GDTW cannot be proven to be positive definite; but, positive definite in (many) practical evaluations)		

Purpose: Aligning temporally distorted patterns

 $\mathcal{T} = [\mathbf{t}_1, \dots, \mathbf{t}_{N_T}]$ $\mathcal{R} = [\mathbf{r}_1, \dots, \mathbf{r}_{N_R}]$

and compute a distance measure $D_{\text{DTW}}(\mathcal{T}, \mathcal{R})$

Warping path: (for aligning corresponding samples)

 $\boldsymbol{\phi}: \{1, \ldots, N\} \to (\{1, \ldots, N_{\mathcal{T}}\} \times \{1, \ldots, N_{\mathcal{R}}\})$

DTW distance:

$$D_{\text{DTW}}\left(\mathcal{T}, \mathcal{R}\right) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{t}_{\phi_{\mathcal{T}(n)}^{*}} - \mathbf{r}_{\phi_{\mathcal{R}(n)}^{*}} \right\|^{2}$$

Purpose: Aligning temporally distorted patterns φ $\mathcal{T} = [\mathbf{t}_1, \dots, \mathbf{t}_{N_T}]$ $\mathcal{R} = [\mathbf{r}_1, \ldots, \mathbf{r}_{N_{\mathcal{R}}}]$ compute distance and measure а $D_{\mathrm{DTW}}(\mathcal{T},\mathcal{R})$ \mathcal{T} \mathcal{P} Warping path: (for aligning corresponding samples) $\phi: \{1, \dots, N\} \to (\{1, \dots, N_{\mathcal{T}}\} \times \{1, \dots, N_{\mathcal{R}}\}) \xrightarrow{\circ} \mathcal{P}_{\mathfrak{s}}$ 3 **DTW distance:** 2 1 2 3 4 $D_{\text{DTW}}\left(\mathcal{T}, \mathcal{R}\right) = \frac{1}{N} \sum_{1}^{N} \left\| \mathbf{t}_{\phi_{\mathcal{T}(n)}^{*}} - \mathbf{r}_{\phi_{\mathcal{R}(n)}^{*}} \right\|^{2}$

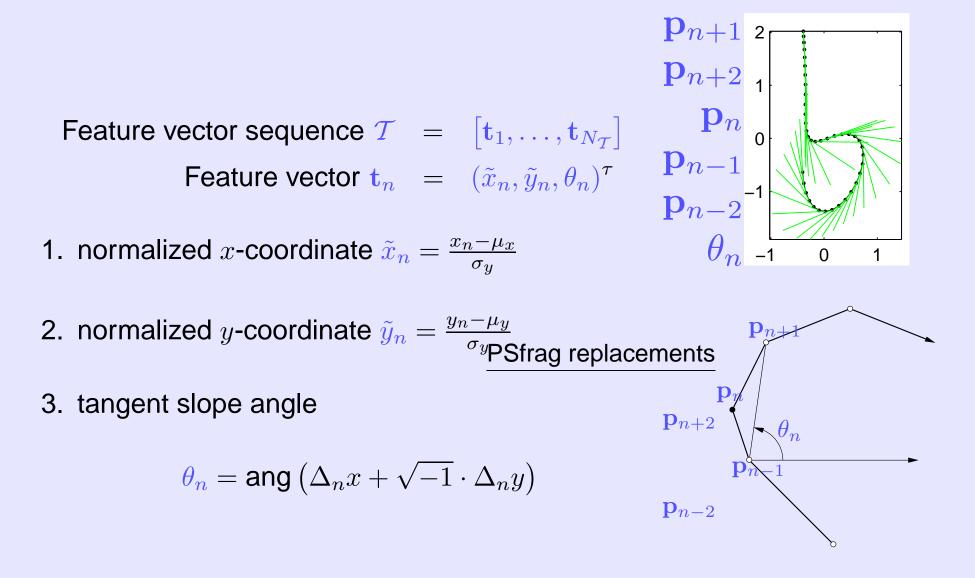
Simulations and Results

The Database

- UNIPEN Train-R01/V07 corpus
- **no** cleaning from poor quality/mislabeled characters

UNIPEN section	number of samples	
1a (digits)	16000	
1b (upper case characters)	28000	
1c (lower case characters)	61000	

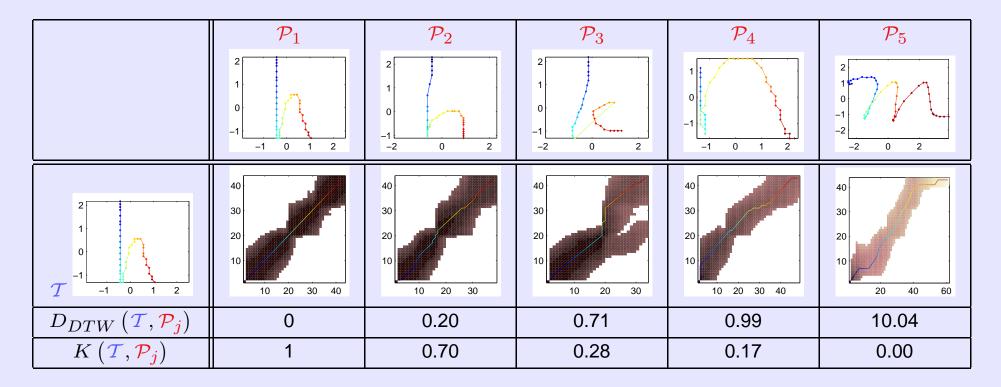
Simulations and Results RSfragereplacements



Gaussian DTW (GDTW) Kernel

Examples

 $K(\mathcal{T}, \mathcal{P}_j) = \exp\left(-\gamma D_{\text{DTW}}(\mathcal{T}, \mathcal{P}_j)\right)$



Error Rates of Two-class Problems

1c section (lower case characters), randomly chosen 67 % Train / 33 % Test set

Difficulty	Character pairs	# TrExpls.	# SVs	$E_{ m SVM-GDTW}$	<i>E</i> _{SDTW} [BB01]
easy	$a\leftrightarrowb$	3540	298	0.5 %	0.8 %
	$d \leftrightarrow m$	2595	334	0.1 %	0.4 %
difficult	$c \leftrightarrow e$	5088	351	3.7 %	7.2 %
	$U \leftrightarrow V$	2214	397	9.2 %	6.8 %
	$y \leftrightarrow g$	2088	358	11.2 %	7.7 %
	$b \leftrightarrow h$	2524	275	2.3 %	3.2 %

Error Rates of Two-class Problems

1c section (lower case characters), randomly chosen 67 % Train / 33 % Test set

Difficulty	Character pairs	# TrExpls.	# SVs	$E_{ m SVM-GDTW}$	$E_{ m SDTW}$ [BB01]
easy	$a\leftrightarrowb$	3540	298	<mark>0.5 %</mark>	0.8 %
	$d \leftrightarrow m$	2595	334	<mark>0.1 %</mark>	0.4 %
difficult	$c \leftrightarrow e$	5088	351	<mark>3.7 %</mark>	7.2 %
	$U \leftrightarrow V$	2214	397	9.2 %	6.8 %
	$y \leftrightarrow g$	2088	358	11.2 %	7.7 %
	$b \leftrightarrow h$	2524	275	<mark>2.3 %</mark>	3.2 %

Error Rates of Two-class Problems

1c section (lower case characters), randomly chosen 67 % Train / 33 % Test set

Difficulty	Character pairs	# TrExpls.	# SVs	$E_{ m SVM-GDTW}$	$E_{ m SDTW}$ [BB01]
easy	$a\leftrightarrowb$	3540	298	0.5 %	0.8 %
	$d \leftrightarrow m$	2595	334	0.1 %	0.4 %
	$c \leftrightarrow e$	5088	351	3.7 %	7.2 %
difficult	$U \leftrightarrow V$	2214	397	9.2 %	<mark>6.8 %</mark>
	$y \leftrightarrow g$	2088	358	11.2 %	<mark>7.7 %</mark>
	$b \leftrightarrow h$	2524	275	2.3 %	3.2 %

Multi-class SVM

DAG (directed acyclic graph)-SVM:

combining $K \cdot (K-1)/2$ two-class SVMs into **one** K-class-SVM

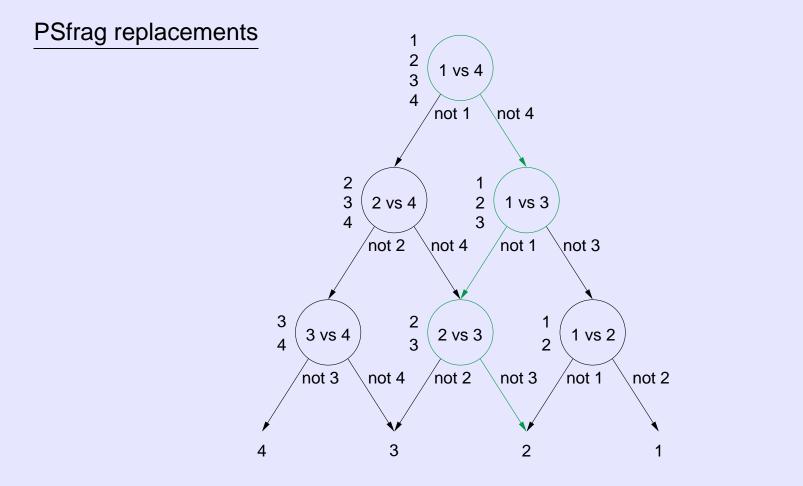


figure taken from (Platt, 2000)

Example of a Multi-class SVM-GDTW

Matlab demo

1c section (lower case characters)

Approach	Error rate E	UNIPEN Database Type	
	(average of 5 runs)		
		Train-R01/V07	
DAG-SVM-GDTW	11.5 %	rand. chosen 10 %/10 % Train/Test	
	12.0 %	rand. chosen 20 %/20 % Train/Test	
		Train-R01/V07	
SDTW [BB01]	13.0 %	rand. chosen 10 %/10 % Train/Test	
	11.4 %	rand. chosen 20 %/20 % Train/Test	
	9.7 %	rand. chosen 67 %/33 % Train/Test	
MLP [PLG01]	14.4 %	DevTest-R02/V02	
HMM-NN hybrid [GADG01]	13,2 %	Train-R01/V07	
HMM [HLB00]	14,1 %	Train-R01/V06	
	14,1 /0	4 % "bad characters" removed	

1c section (lower case characters)

Approach	Error rate E	UNIPEN Database Type	
(average of 5 runs)			
		Train-R01/V07	
DAG-SVM-GDTW	<mark>11.5 %</mark>	rand. chosen 10 %/10 % Train/Test	
	<mark>12.0 %</mark>	rand. chosen 20 %/20 % Train/Test	
		Train-R01/V07	
SDTW [BB01]	<mark>13.0 %</mark>	rand. chosen 10 %/10 % Train/Test	
	11.4 %	rand. chosen 20 %/20 % Train/Test	
	9.7 %	rand. chosen 67 %/33 % Train/Test	
MLP [PLG01]	14.4 %	DevTest-R02/V02	
HMM-NN hybrid [GADG01]	13,2 %	Train-R01/V07	
HMM [HLB00]	14,1 % Train-R01/V06		
	17,1 70	4 % "bad characters" removed	

1c section (lower case characters)

Approach	Error rate E	UNIPEN Database Type	
	(average of 5 runs)		
		Train-R01/V07	
DAG-SVM-GDTW	11.5 %	rand. chosen 10 %/10 % Train/Test	
	<mark>12.0 %</mark>	rand. chosen 20 %/20 % Train/Test	
		Train-R01/V07	
SDTW [BB01]	13.0 %	rand. chosen 10 %/10 % Train/Test	
	<mark>11.4 %</mark>	rand. chosen 20 %/20 % Train/Test	
	9.7 %	rand. chosen 67 %/33 % Train/Test	
MLP [PLG01]	14.4 %	DevTest-R02/V02	
HMM-NN hybrid [GADG01]	13,2 %	Train-R01/V07	
HMM [HLB00]	14,1 %	Train-R01/V06	
	14,1 /0	4 % "bad characters" removed	

Complexity

multi-class, 1c section (lower case characters), randomly chosen 10 % Train / 10 % Test set

	Order	Experiments on AMD Athlon 1200 MHz
Time		
Training	$\mathcal{O}\left(M^2\cdot T_{ ext{kernel}} ight)$	81 h
Classification	$(K-1) \cdot M_s \cdot T_{ ext{kernel}}$	2.5 sec
Memory	$rac{K \cdot (K-1)}{2} \cdot M_S \cdot \tilde{N} \cdot F \cdot ext{sizeof(float)}$	17.5 MByte

- *M*: total number of training samples
- *K*: number of classes
- M_s : average number of support vectors
- \tilde{N} : average sequence length
- *F*: number of features

- A discriminative classifier for sequences: SVM with a Gaussian DTW kernel (SVM-GDTW)
- Examples, simulations and results
 - Small training sets: Significant decrease of error rate
 - Large training sets: Comparable error rates
- Remaining potential for improvement
- Just a small number of model parameters have to be adjusted
- Complexity of SVM-GDTW quite high
- Kernel is **not** positive definite and thus global optimality of the training cannot be guaranteed.
- Suitable for all problems with sequences (speech, genome processing, ...)

- A discriminative classifier for sequences: SVM with a Gaussian DTW kernel (SVM-GDTW)
- Examples, simulations and results
 - Small training sets: Significant decrease of error rate
 - Large training sets: Comparable error rates
- Remaining potential for improvement
- Just a small number of model parameters have to be adjusted
- Complexity of SVM-GDTW quite high
- Kernel is **not** positive definite and thus global optimality of the training cannot be guaranteed.
- Suitable for all problems with sequences (speech, genome processing, ...)

- A discriminative classifier for sequences: SVM with a Gaussian DTW kernel (SVM-GDTW)
- Examples, simulations and results
 - Small training sets: Significant decrease of error rate
 - Large training sets: Comparable error rates
- Remaining potential for improvement
- Just a small number of model parameters have to be adjusted
- Complexity of SVM-GDTW quite high
- Kernel is **not** positive definite and thus global optimality of the training cannot be guaranteed.
- Suitable for all problems with sequences (speech, genome processing, ...)

- A discriminative classifier for sequences: SVM with a Gaussian DTW kernel (SVM-GDTW)
- Examples, simulations and results
 - Small training sets: Significant decrease of error rate
 - Large training sets: Comparable error rates
- Remaining potential for improvement
- Just a small number of model parameters have to be adjusted
- Complexity of SVM-GDTW quite high
- Kernel is **not** positive definite and thus global optimality of the training cannot be guaranteed.
- Suitable for all problems with sequences (speech, genome processing, ...)

- A discriminative classifier for sequences: SVM with a Gaussian DTW kernel (SVM-GDTW)
- Examples, simulations and results
 - Small training sets: Significant decrease of error rate
 - Large training sets: Comparable error rates
- Remaining potential for improvement
- Just a small number of model parameters have to be adjusted
- Complexity of SVM-GDTW quite high
- Kernel is **not** positive definite and thus global optimality of the training cannot be guaranteed.
- Suitable for all problems with sequences (speech, genome processing, ...)

- A discriminative classifier for sequences: SVM with a Gaussian DTW kernel (SVM-GDTW)
- Examples, simulations and results
 - Small training sets: Significant decrease of error rate
 - Large training sets: Comparable error rates
- Remaining potential for improvement
- Just a small number of model parameters have to be adjusted
- Complexity of SVM-GDTW quite high
- Kernel is **not** positive definite and thus global optimality of the training cannot be guaranteed.
- Suitable for all problems with sequences (speech, genome processing, ...)

- A discriminative classifier for sequences: SVM with a Gaussian DTW kernel (SVM-GDTW)
- Examples, simulations and results
 - Small training sets: Significant decrease of error rate
 - Large training sets: Comparable error rates
- Remaining potential for improvement
- Just a small number of model parameters have to be adjusted
- Complexity of SVM-GDTW quite high
- Kernel is **not** positive definite and thus global optimality of the training cannot be guaranteed.
- Suitable for all problems with sequences (speech, genome processing, ...)

- Character recognition \longrightarrow word recognition
- Improving computational speed
- Investigating non-positive definiteness
- Investigating additional kernels
- Hybrid of generative / discriminative classifier

- Character recognition word recognition
- Improving computational speed
- Investigating non-positive definiteness
- Investigating additional kernels
- Hybrid of generative / discriminative classifier

- Character recognition word recognition
- Improving computational speed
- Investigating non-positive definiteness
- Investigating additional kernels
- Hybrid of generative / discriminative classifier

- Character recognition word recognition
- Improving computational speed
- Investigating non-positive definiteness
- Investigating additional kernels
- Hybrid of generative / discriminative classifier

- Character recognition word recognition
- Improving computational speed
- Investigating non-positive definiteness
- Investigating additional kernels
- Hybrid of generative / discriminative classifier

References

- [BB01] Claus Bahlmann and Hans Burkhardt. Measuring HMM similarity with the Bayes probability of error and its application to online handwriting recognition. In *Proc. of the 6th ICDAR*, pages 406–411, 2001.
- [GADG01] N. Gauthier, T. Artères, B. Dorizzi, and P. Gallinari. Strategies for combining on-line and off-line information in an on-line handwriting recognition system. In *Proc. of the 6th ICDAR*, pages 412–416, 2001.
- [HLB00] Jianying Hu, Sok Gek Lim, and Michael K. Brown. Writer independent on-line handwriting recognition using an HMM approach. *Pattern Recognition*, 33:133–147, January 2000.
- [PCST00] J. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGS for multiclass classification. In S.A. Solla, T.K. Leen, and K.-R. Müller, editors, *Advances in Neural Information Processing Systems*. MIT Press, 2000.

[PLG01] Marc Parizeau, Alexandre Lemieux, and Christian Gagné. Character recognition experiments using UNIPEN data. In *Proc.* of the 6th ICDAR, pages 481–485, 2001.

UNIPEN section	Approach	Error rate E	UNIPEN Database Type
1a (digits)	DAG-SVM-GDTW	3.8 % 3.7 %	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test
	SDTW [BB01]	4.5 % 3.2 %	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test
	MLP [PLG01]	3.0 %	DevTest-R02/V02
	HMM [HLB00]	3.2 %	Train-R01/V06 4 % "bad characters" removed
1b (upper case)	DAG-SVM-GDTW	7.4 % 7.3 %	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test
	SDTW [BB01]	10.0 % 8.0 %	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test
	HMM [HLB00]	6.4 %	Train-R01/V06 4 % "bad characters" removed
	DAG-SVM-GDTW	11.5 % 12.0 %	Train-R01/V07 rand. chosen 10 %/10 % Train/Test rand. chosen 20 %/20 % Train/Test
1c (lower case)	SDTW [BB01]	13.0 % 11.4 % 9.7 %	Train-R01/V07 rand. chosen 10 %/10 % Train/Test rand. chosen 20 %/20 % Train/Test rand. chosen 67 %/33 % Train/Test
	MLP [PLG01]	14.4 %	DevTest-R02/V02
	HMM-NN hybrid [GADG01]	13,2 %	Train-R01/V07
	HMM [HLB00]	14,1 %	Train-R01/V06 4 % "bad characters" removed

UNIPEN section	Approach	Error rate E	UNIPEN Database Type	
	DAG-SVM-GDTW	<mark>3.8 %</mark> 3.7 %	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test	
1a (digits)	SDTW [BB01]	<mark>4.5 %</mark> 3.2 %	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test	
	MLP [PLG01]	3.0 %	DevTest-R02/V02	
	HMM [HLB00]	3.2 %	Train-R01/V06 4 % "bad characters" removed	
	DAG-SVM-GDTW	7.4 % 7.3 %	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test	
1b (upper case)	SDTW [BB01]	<mark>10.0 %</mark> 8.0 %	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test	
	HMM [HLB00]	6.4 %	Train-R01/V06 4 % "bad characters" removed	
	DAG-SVM-GDTW	<mark>11.5 %</mark> 12.0 %	Train-R01/V07 rand. chosen 10 %/10 % Train/Test rand. chosen 20 %/20 % Train/Test	
1c (lower case)	SDTW [BB01]	<mark>13.0 %</mark> 11.4 % 9.7 %	Train-R01/V07 rand. chosen 10 %/10 % Train/Test rand. chosen 20 %/20 % Train/Test rand. chosen 67 %/33 % Train/Test	
	MLP [PLG01]	14.4 %	DevTest-R02/V02	
	HMM-NN hybrid [GADG01]	13,2 %	6 Train-R01/V07	
	HMM [HLB00]	14,1 %	Train-R01/V06 4 % "bad characters" removed	

UNIPEN section	Approach	Error rate E	UNIPEN Database Type
1a (digits)	DAG-SVM-GDTW	3.8 % <mark>3.7 %</mark>	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test
	SDTW [BB01]	4.5 % <mark>3.2 %</mark>	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test
	MLP [PLG01]	3.0 %	DevTest-R02/V02
	HMM [HLB00]	3.2 %	Train-R01/V06 4 % "bad characters" removed
1b (upper case)	DAG-SVM-GDTW	7.4 % <mark>7.3 %</mark>	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test
	SDTW [BB01]	10.0 % <mark>8.0 %</mark>	Train-R01/V07 rand. chosen 20 %/20 % Train/Test rand. chosen 40 %/40 % Train/Test
	HMM [HLB00]	6.4 %	Train-R01/V06 4 % "bad characters" removed
	DAG-SVM-GDTW	11.5 % <mark>12.0 %</mark>	Train-R01/V07 rand. chosen 10 %/10 % Train/Test rand. chosen 20 %/20 % Train/Test
1c (lower case)	SDTW [BB01]	13.0 % <mark>11.4 %</mark> 9.7 %	Train-R01/V07 rand. chosen 10 %/10 % Train/Test rand. chosen 20 %/20 % Train/Test rand. chosen 67 %/33 % Train/Test
	MLP [PLG01]	14.4 %	DevTest-R02/V02
	HMM-NN hybrid [GADG01]	13,2 %	Train-R01/V07
	HMM [HLB00]	14,1 %	Train-R01/V06 4 % "bad characters" removed