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ABSTRACT
The Gleason score is the single most important prognostic 
indicator for prostate cancer candidates and plays a 
significant role in treatment planning. Histopathological 
imaging of prostate tissue samples provides the gold 
standard for obtaining the Gleason score, but the manual 
assignment of Gleason grades is a labor-intensive and error-
prone process. We have developed a texture classification 
system for automatic and reproducible Gleason grading. 
Our system characterizes the texture in images belonging to 
a tumor grade by clustering extracted filter responses at 
each pixel into textons (basic texture elements). We have 
used random forests to cluster the filter responses into 
textons followed by the spatial pyramid match kernel in 
conjunction with an SVM classifier. We have demonstrated 
the efficacy of our system in distinguishing between 
Gleason grades 3 and 4.  

Index Terms— Gleason grading, prostate cancer, 
texture classification 

 
1. INTRODUCTION 

 

Prostate cancer is the second leading cause of death in 
American men, after lung cancer. Candidates suspected to 
have prostate cancer commonly undergo tissue biopsy in 
order to assess the presence and aggressiveness of cancer. 
The biopsied tissue samples are imaged with a microscope 
after hematoxylin and eosin (H&E) staining and assigned 
tumor grades according to the Gleason grading system 
(grades 1-5)[12].  In Fig. 1, we have shown H&E images of 
prostate cancer tissue samples corresponding to Gleason 

grades 3 and 4. The Gleason grade characterizes tumor 
differentiation, i.e., the degree to which the tumor resembles 
healthy tissue. The sum of the primary and the secondary 
Gleason grades yields the Gleason score, the single most 
important prognostic indicator for prostate cancer patients. 
The Gleason score plays an important role in deciding the 
future course of treatment. However, the assignment of 
Gleason scores is a time-consuming, error-prone process 
that depends upon the samples obtained during core biopsy 
as well as on the expertise of the pathologist. One way to 
validate the Gleason score obtained during core biopsy is to 
re-calculate this score in patients who undergo radical 
prostatectomy, thereby eliminating the sampling error. This 
form of validation is also required in order to study the 
correlation of prostate cancer biomarkers observed in other 
macroscopic imaging modalities with the Gleason score [1]. 
Calculation of Gleason scores on the entire prostate 
specimen can also help in the design of a procedure for 
selecting optimal biopsy locations [2]. Computer-aided 
Gleason grading becomes essential when we need to assign 
tumor grades to the entire prostate specimen. Therefore, we 
have developed a computer-aided system to assign Gleason 
grades in an automatic and reproducible manner.  

(a) Gleason 3 (b) Gleason 4

Fig. 1: H&E images of cancerous prostate tissue 

Filter responses Texton map Texton histogram 

Fig. 2: Texton histogram for an input H&E image 

Filter response 
clustering 

 Our system relies on accurate texture characterization 
and classification in order to automatically compute the 
Gleason grade of an imaged prostate specimen. We use 
filtering followed by clustering in order to characterize 
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textures via basic texture elements or textons. The 
distribution of these textons provides a discriminative 
signature for each tumor grade and is used as the input to a 
support vector machine (SVM) classifier. For improved 
accuracy and speed, we have used random forests for 
clustering and the spatial pyramid match kernel in the SVM 
classifier. In Sec. 2, we describe our texture classifier in 
detail and use it to distinguish between Gleason grades 3 
and 4 in Sec. 3, where we also provide comparisons with 
alternative clustering and classification methods. We 
conclude with some final remarks in Sec. 4. 
 

2. METHODS 

2.1. Texture Classification Framework 
We follow the texton-based texture classification 
framework introduced in [3] as the basis for our work and 
briefly review this approach below: For every image 
belonging to a specific texture, an appropriate rotationally 
invariant filter bank was first used to extract responses at 
each pixel. The high-dimensional feature space of filter 
responses provides an accurate description of the texture 
characteristics of each image, but for accurate classification, 
we need a sparser compact representation that preserves the 
information content. Therefore, clustering using the K-
means algorithm was performed in this filter response space 
in order to identify basic texture elements or textons for 
each texture class. The cluster centers from the different 
texture classes were then concatenated and texton maps, i.e., 
cluster (texton) assignments at each pixel, for each textural 
image were obtained. It was shown in [3] that the spatial 
histogram of the texton map provides a rich discriminative 
signature for each textural image. An example of a few filter 
response images, a texton map and a texton histogram 
corresponding to the input H&E image in Fig. 1(a) is shown 
in Fig. 2. Several model histograms for each texture class 
were stored during training and the texture class for an 
image during the test phase was assigned using a K-NN 
classifier by comparing the texton histogram of the test 
image with the model histograms using the 2 distance. 
 Building upon the approach in [3], we replace the 
clustering and classification algorithms with potentially 
more powerful alternatives described below. We continue to 
use the MR-8 filter bank introduced in [3]. 
 
2.2. Texton Identification using Random Forests 
Since clustering using the K-means framework is slow 
during the training phase, tree-structured alternatives are 
used for speed-up. During the training phase, a binary 
clustering tree uses suitably determined binary splits in 
order to recursively divide the entire training set and each 
training sample ends up being assigned to a tree leaf. The 
same leaves can then be used for cluster assignment during 
the testing phase by using the recursive binary splits 
determined during training.  Instead of relying upon a single 

space-partitioning tree to characterize the data, random 
forests (RF) [5,6] train an ensemble of trees to capture a 
richer description of the input feature space. We shall use 
two types of random trees, namely, random projection trees 
(RPT) [4] and extremely randomized decision trees (ERT) 
[5,6], as components within our random forests.  
 RPTs use two forms of binary-splits, viz., projection 
splits and distance splits. A projection split picks a random 
direction for projecting the input features and splits them 
about the median projection, the underlying intuition being 
that a randomly chosen direction can yield almost as 
effective a projection direction as the optimal one 
determined via principal component analysis. A distance 
split is only used when the distance between the farthest two 
points is significantly larger than the average distance 
between any two points, suggesting that no single direction 
can provide a good split. In the distance split, the median 
distance from the mean of all input features is used to 
perform a spherical split of the feature space.  It is shown in 
[4] that RPTs can adapt to the local covariance dimension of 
the data and can hence yield a more accurate description of 
the features in case they lie in a non-linear subspace.   
 ERTs split the data at each node by picking the best 
feature component (filter response) and threshold from a set 
of randomly chosen feature components and thresholds so 
that a measure of information gain is maximized. We use 
the following definition [6] of the information gain of a 
feature component f split at s: 
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denotes the  Shannon entropy of the class labels in set A. As 
mentioned in [5,6], randomized decision trees have an 
advantage over RPTs and K-means clustering because they 
use the class labels to find discriminative space partitions 
during training. Although an ERT is only used for space-
partitioning and not for classification during the test phase, 
its corresponding texton map should be more useful during 
the subsequent SVM classification stage described in Sec. 
2.3. However, ERTs only use a single feature component 
for splitting the data, whereas RPTs utilize the information 
from all feature components during the projection or 
distance splits. Therefore, we shall use both RPTs and ERTs 
in our experiments in Sec. 3. 
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2.3. SVMs and the Spatial Pyramid Match Kernel 
The 2-class SVM [14] is designed to find a max-margin 
linear classifier separating the classes (e.g., grade 3 vs. 
grade 4) in a higher-dimensional feature space. An 
appropriately selected kernel K, designed to measure the 
similarity between any two input features (texton maps or 
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texton histograms), controls the mapping from the input 
features into the higher-dimensional space. 
 In order to accurately represent the differences between 
the multi-scale spatial content present in two different visual 
word (texton) maps, the positive-definite spatial pyramid 
match kernel (SPM) was introduced in [7]. The SPM kernel 
computed over L+1 levels for any two texton maps P and Q 
is given by: 
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 and  and  are portions 

of histograms at level l with j indexing all nodes at level l. 
Since each tree in a random forest yields its own texton 
map, as in [6], we use the mean SPM kernel value over all 
trees. 
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3. RESULTS AND DISCUSSION 

Our prostate cancer dataset consisted of 25 H&E images of 
Gleason grade 3 and 50 images of Gleason grade 4. Each 
image was acquired at 10X resolution with 0.625 micron 
pixel size and was of size 1392x1040 pixels. (We note that a 
few of our grade 4 images contained small regions 
belonging to other tumor grades, but we still assigned the 
grade 4 label to these images.) 
 For training our clustering algorithms, we selected 30 
images (15 of each grade). As in [3] 2, using the K-means 
algorithm, filter responses from 50000 randomly chosen 
pixels in each of the 15 images belonging to one class were 
clustered to yield 8 centers, resulting in a total of 16 
concatenated cluster centers from both classes. A texton 
map and a 16-bin texton histogram were then computed for 
each of the 30 images. As in [3], we have found the final 
classification performance of K-means clustering to be 
relatively insensitive to the number of clusters selected. 
Using a similar scheme, we trained two forests, one for each 
texture (grade) class and each with T trees, consisting of 
depth-3 RPTs. The resulting 8 leaves from each tree yielded 
class-specific texton maps, whose histograms were then 
concatenated to yield a single histogram for each training 
image. For T=1, we would thus get a 16-bin histogram for 
each training image. Note that the tumor grade labels of the 
images themselves get used during this clustering phase 
since the textons corresponding to each texture class are 
separately identified. However, for our forest of ERTs, we 
train a single forest of depth-4 ERTs by using the filter 
responses from both classes. This step would have been 
detrimental to the classification performance of K-means or 
RPTs, but it is the key to the success of ERTs. We have 
                                                 
2 We thank Roberto Tran and Rene Vidal for providing an 
implementation of [3].  

used the values T=1 and 4 for RF-RPTs and RF-ERTs to 
check the benefit of using a forest with many trees. After 
the training phase for each clustering algorithm was over, 
texton maps (and histograms) were then obtained for the 
remaining 45 test images as well. 
 In the classification stage, we used the SVM with a 
standard radial basis function kernel ( =1/histogram-bins, 
C=1) operating on the base-level histogram (after Z-score 
normalization) and with a 3-level SPM kernel operating on 
the texton map(s). To provide a comparison with the 
baseline approach in [3], we have also provided a 
comparison with the K-NN (K nearest neighbor) classifier 
(K=4) using the 2 distance. To train and validate our 
classifier, we used the same 30 training images used during 
clustering and then validated the resulting classifier on the 
remaining 45 test images. Thus, both the clustering and the 
classifier training were oblivious to the final test set used for 
validation. 
 Our classification results on the test dataset of 45 images 
are displayed in Table 1. For each combination of clustering 
and classification algorithm, we have tabulated the classifier 
accuracy in correctly identifying each tumor grade 
separately, the overall classifier accuracy as well as the area 
under the ROC curve (AUC). Note that the AUC ]1,0[  is 
immune to the classifier trade-off between grade 3 and 
grade 4 accuracy. Since all our methods use some form of 
randomization, we have reported the average performance 
on 10 runs along with error bars. Among the three 
classification techniques, the RBF kernel and the K-NN 
classifier yield similar performance. The relatively poor 
performance of the SPM kernel could be because of over-
fitting problems due to the small non-grade-4 regions 
present in our grade 4 images. Between the five clustering 
methods compared, highlighted AUC values for the RBF 
kernel show no significant difference in performance, 
barring the T=1 RF-ERT result. A forest of 4 ERTs (rows 
13-15) has better mean performance with lower error bars 
than a single ERT (rows 7-9), but an RF of 8 RPTs (rows 
10-12) does not outperform 2 class-specific RPTs (rows 4-
6) as significantly.  

We note that using our un-optimized implementations, 
for a test image, filtering requires about 3 sec., classification 
time is negligible and textonization using K-means, RF-
RPT-T=4 and RF-ERT-T=4 requires 0.3 sec., 2 sec. and 3 
sec., respectively. Training/testing times for the results in 
rows 1-3, rows 10-12 and rows 13-15 were about 200 min., 
120 min. and 140 min., respectively. 
Related Work: Our approach to histopathology texture 
analysis is most similar to the work in [8], although they 
have used the standard K-means algorithm for clustering 
and have used a boosting algorithm for classification. 
Moreover, this work is not concerned with Gleason grading. 
Automated Gleason grading was the focus in [9-12]. 
However, the work in [9] only used global texture features 
and the work in [10] used architectural features. Moreover, 
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both these papers used fewer grade 3 and grade 4 samples 
for cross-validation. The work in [11] used global fractal 
dimensions for texture characterization and used a larger 
sample population of all Gleason grades, but they do not 
provide results on the individual accuracies for 
distinguishing between grades 3 and 4, whereas the work in 
[12] only attempted to discriminate between low-grade and 
high-grade tumors. 

Table 1: Classification Results 
 Gr. 3  

%Acc. 
Gr. 4  
%Acc. 

Net  
%Acc. 

AUC 

1. K-means,  
2 K-NN 

90.0 ± 
0.00 

92.9 ± 
1.50 

92.2 ± 
1.17 

NA 
 

2. K-means,  
RBF-SVM 

90.0 ± 
0.00 

95.1 ± 
1.38 

94.0 ± 
1.07 

0.976± 
0.005 

3. K-means,  
SPM-SVM 

100 ± 
0.00 

85.1 ± 
2.63 

88.4 ± 
2.04 

0.974± 
0.005 

4. RF-RPT,T=1,  
2 K-NN 

96.0 ± 
5.16 

90.3 ± 
2.76 

91.6 ± 
1.75 

NA 

5. RF-RPT,T=1,  
RBF-SVM 

95.0 ± 
5.27 

92.3 ± 
5.05 

92.9 ± 
3.60 

0.981± 
0.010 

6. RF-RPT,T=1,  
SPM-SVM 

94.0 ± 
8.43 

87.4 ± 
7.99 

88.8 ± 
5.44 

0.968± 
0.016 

7. RF-ERT,T=1, 
2 K-NN 

89.0 ± 
7.38 

83.7 ± 
5.56 

84.9 ± 
3.11 

NA 

8. RF-ERT,T=1,  
RBF-SVM 

86.0 ± 
8.43 

85.7 ± 
5.55 

85.8 ± 
4.22 

0.956±
0.033 

9. RF-ERT,T=1,  
SPM-SVM 

90.0 ± 
4.71 

64.6 ± 
10.9 

70.2 ± 
7.71 

0.895±
0.037 

10. RF-RPT,T=4, 
2 K-NN 

93.0 ± 
4.83 

94.0 ± 
0.90 

93.8 ± 
1.41 

NA 

11. RF-RPT,T=4,  
RBF-SVM 

94.0 ± 
5.16 

93.4 ± 
1.92 

93.6 ± 
1.26 

0.984± 
0.006 

12. RF-RPT,T=4,  
SPM-SVM 

99.0 ± 
3.16 

79.7 ± 
8.24 

84.0 ± 
6.27 

0.961± 
0.020 

13. RF-ERT,T=4, 
2 K-NN 

98.0 ± 
4.21 

89.1 ± 
3.51 

91.1 ± 
2.34 

NA 

14. RF-ERT,T=4,  
RBF-SVM 

96.0 ± 
6.99 

86.8 ± 
4.08 

88.8 ± 
3.47 

0.978± 
0.011 

15. RF-ERT,T=4,  
SPM-SVM 

69.0 ± 
1.97 

92.3 ± 
6.03 

87.1 ± 
3.44 

0.950± 
0.029 

 

4. CONCLUSION 
 
We have demonstrated the efficacy of our texture 
classification system in distinguishing between Gleason 
grades 3 and 4. In future work, we plan to train our system 
on additional Gleason grades, stroma and benign epithelium 
and to then use our automatic Gleason grading system on 
whole-mount histopathology slides. In addition, we also 
plan to use our texture classifiers for distinguishing between 

PIN (Prostatic Intraepithelial Neoplasia) and BPH (Benign 
Prostatic Hyperplasia). In order to increase the accuracy of 
our system, we plan to investigate the use of projection or 
distance splits within our random decision trees and the use 
of unified texton generation and classification [13].  
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