
Master’s Thesis

3D Object Detection

using

Tangent Convolutions

Jan Bechtold
December 2018

Albert-Ludwigs-University Freiburg
Faculty of Engineering

Department of Computer Science

Writing period

19. 06. 2018 – 19. 12. 2018

Examiner

Prof. Dr. Thomas Brox

Dr. Joschka Boedecker

Adviser

Maxim Tatarchenko

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.
I hereby also declare, that my Thesis has not been prepared for another examination
or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Abstract

Object detection is one of the classic computer vision tasks. It requires localizing
individual objects in visual data and determining their type. State of the art methods
for 2D object detection use convolutional neural networks (CNNs), which can be
efficiently applied to a dense grid of information, like images. In contrast to images,
applying CNNs to 3D data is not straightforward because 3D grid convolution is
inefficient for large scenes.
In this work we build an object detection framework for 3D point clouds. It is

based on Tangent Convolutions and follows the Faster R-CNN architecture. Tangent
Convolutions efficiently implement a CNN for analyzing 3D point clouds, by convolving
local approximations of a 3D structure with a 2D kernel.

Our object detector is efficient and scales to large scenes with hundreds of thousands
of points, due to the use of tangent convolutions. We evaluate our method on two
indoor datasets: ScanNet and Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS).
The proposed method is generic and can be applied to both indoor datasets without
any changes. Experimental results show that our object detector is able to detect
objects of various sizes and shapes, ranging from a small sink to a large couch. A
comparison of our ScanNet benchmark score to other groups on the leader board
shows that our method is competitive with other approaches.

iii

Zusammenfassung

Objekterkennung ist eine zentrale Aufgabe in der Bildverarbeitung. Dabei wird
bestimmt, wo sich ein oder mehrere Objekte befinden und um welchen Objekt-Typ es
sich handelt. Neueste Methoden der Objekterkennung in Bildern nutzen Convolutional
Neural Networks (CNNs). Für 3D Daten, wie zum Beispiel Punktwolken, können
dieselben Methoden nicht ohne weiteres verwendet werden, da sich die Effizienz
verringert.

In dieser Arbeit präsentieren wir eine Methode zur Objekterkennung in 3D Punk-
twolken, die auf einem CNN basiert. Die Architektur unseres CNN orientiert sich
dabei an der Architektur von Faster R-CNN, einer bewährten Methode zur Ob-
jekterkennung in 2D. Unsere Methode kann 3D Punktwolken effizient analysieren,
weil Tangent Convolutions als Baustein für das CNN verwendet werden. In 3D
Punktwolken sind die Oberflächen der gescannten Objekte durch Punkte abgebildet.
Tangent Convolutions approximieren die Oberflächen lokal durch eine Ebene, sodass
2D Faltungen darauf angewendet werden können.

Unsere Objekterkennung ist effizient und kann daher für große Punktwolken mit
über hunderttausend Punkten angewendet werden. Wir evaluieren unsere Meth-
ode auf zwei Datensätzen, die Punktwolken von Innenräumen enthalten: ScanNet
und S3DIS. Unsere Methode ist allgemein und funktioniert auf beiden Datensätzen
ohne spezielle Anpassungen. Wir zeigen anhand von qualitativen und quantitativen
Auswertungen, dass unsere Methode Objekte verschiedener Größen detektiert. Ein
Vergleich zwischen unseren Ergebnissen und den Ergebnissen anderer Methoden auf
dem ScanNet Benchmark-Test zeigt, dass unsere Methode konkurrenzfähig ist.

v

Contents

1 Introduction 1

2 Related Work 3
2.1 2D Object Detection . 3
2.2 3D Deep Learning . 4
2.3 3D Object Detection and Instance Segmentation 4

3 Background 7
3.1 Faster R-CNN . 7

3.1.1 Region Proposal Network . 7
3.1.2 Classifier . 11
3.1.3 Joint Training . 12

3.2 Tangent Convolutions for dense prediction in 3D 12

4 Approach 19
4.1 Region Proposal Network . 19

4.1.1 Anchor Definition . 21
4.1.2 Training . 23

4.2 Classifier . 25
4.2.1 Architecture . 25
4.2.2 Training . 26

4.3 ROI Alignment . 27

5 Experiments 29
5.1 Datasets . 29
5.2 Evaluation metrics . 30
5.3 Region Proposal Network . 33

5.3.1 Anchor Appearance . 33
5.3.2 Anchor Reference Points . 37
5.3.3 Number of Anchors . 39
5.3.4 ROI Evaluation . 41

vii

5.4 Classifier . 43
5.4.1 Performance Evaluation . 43
5.4.2 Tangent- vs 3D Convolutions 46

5.5 ScanNet Benchmark Evaluation . 48
5.5.1 Input Signal Configurations 48
5.5.2 Submission to Leader Board 50
5.5.3 Qualitative Results for ScanNet 52

5.6 Evaluation for S3DIS . 55

6 Conclusion and Future Work 59
6.1 Conclusion . 59
6.2 Future Work . 59

Bibliography 61

viii

List of Figures

1 Faster R-CNN architecture with RPN and Classifier 8
2 Faster R-CNN Region Proposal Network 9
3 Fast R-CNN Classifier architecture 11
4 Schematic Example of a tangent Image for a Sphere 13
5 Mapping the Point Signals to the Pixel Signals 14
6 Tangent Convolution Layer . 15
7 Schematic for Distance to tangent Plane. 16
8 Tangent convolution network architecture 17

9 Architecture of our Approach . 19
10 Region Proposal Network Architecture 20
11 Relative Positioning of a Box to a Point 21
12 Schematic Bounding Box for different Rotations of a Door like Object 22
13 Object Appearance depends on the Rotation. 22
14 Standard Anchor Boxes . 23
15 Classifier Architecture . 26

16 Dataset examples . 29
17 Evaluation for instance masks produced by ground truth boxes . . . 32
18 Mean shape and variance of bounding box for ScanNet 34
19 Box size histogram for class chair and bookshelf 35
20 Orientation of the Room affects the Bounding Box 36
21 Tailored Anchor Boxes for ScanNet 37
22 RPN Box Predictions . 38
23 Histograms for three different Anchor Reference Points 39
24 Number of Anchors Evaluation Histograms 40
25 RPN Proposal Evaluation on ScanNet 42
26 Table Object Example for ShapeNet and S3DIS 43
27 Overlapping Objects in a Proposed Region 46
28 ScanNet Validation D . 48

ix

29 ScanNet Validation DHNC . 49
30 Picture improved for more Input Signals. 50
31 ScanNet Leader Board Comparison 51
32 Qualitative Results ScanNet . 54
33 Stanford Validation DHNC . 55
34 Qualitative Results for S3DIS . 57

x

List of Tables

1 Mean AP values for instance masks produced by ground truth boxes 33
2 General Anchors vs tailored Anchors - IoU 36
3 Standard Anchors - Tailored Anchors comparison per class 37
4 RPN number of Anchors Evaluation 41
5 Proposals from the RPN evaluated on ScanNet Benchmark. 41
6 Confusion Matrix for Classifier on ShapeNet 43
7 Confusion Matrix for Classifier on S3DIS-GT 44
8 Classifier Comparison on S3DIS-GT and S3DIS-RPN 45
9 Classifier Comparison Mean Measures 45
10 Classifier Mean Comparison for BL and TC 47
11 Comparison BL - TC on S3DIS . 47
12 Object Detector Performance Comparison Depth vs all Inputs 50
13 ScanNet Leader Board Comparison on Mean Average Precision . . . 51
14 Object Detector Results on S3DIS 55

xi

1 Introduction

For computers, understanding a scene that is displayed in an image is difficult task.
Segmenting an image semantically requires knowing the object type for each pixel. In
contrast, object detection coarsely locates objects with boxes, but it can distinguish
between instances of an object type. Instance segmentation combines the precision of
semantic segmentation with the instance notion of object detection. For every pixel
the object type and instance are predicted. State-of-the-art algorithms for the three
tasks, mentioned in the above, build upon convolutional neural networks (CNNs).

LiDAR sensors provide high-resolution 3D data represented as point clouds. While
object detection methods for images are very advanced in detection accuracy, speed,
and memory consumption, powerful methods for processing the 3D data are rare.
A straightforward extension of CNNs to process point clouds is to use 3D grid
convolutions on an occupancy grid map. 3D grid maps and convolutions, however,
are inefficient for large-scale 3D scenes. Recent works have tackled processing 3D
data with CNNs by using octree structures [1], graph based approaches [2], and
parametric convolutions for non-grid structured data [3]. Among them is the tangent
convolution method [4]. The core idea of the method is to locally approximate
the surface geometry with a plane and perform a regular 2D convolution on this
approximation. This is efficient and allows for the processing of city-scale scenes.

In this work we design an object detector for 3D data which uses tangent convolu-
tions as the main building block. The architecture of our object detector is based
on the general structure of Faster R-CNN where object detection is split into two
subtasks. First, our network identifies regions of interest (ROI) or volumes of interest
in the 3D case. Second, our network predicts one object class label for each ROI.
Tangent convolutions are used for efficient feature extraction in both tasks. Tangent
convolutions perform local processing of the point cloud. This works well for semantic
segmentation where a class label is predicted per point. In contrast to per point
predictions, our object detector uses the features from tangent convolutions to make
a prediction for a region of interest. We evaluate our method on two indoor datasets:
ScanNet [5] and Stanford [6]. The ScanNet team provides a benchmark for instance

1

segmentation, where we compare our method with other state of the art methods. We
convert detection boxes into instance labels per point by assigning each point within
the box the corresponding label. Our method is competitive with other methods on
the leader board.

We designed an object detector that follows the design of the successful 2D region
based object detection approach and uses efficient processing operations for 3D. It is
applicable to large indoor scenes. Furthermore, we are able to detect diverse objects,
e.g., a 30cm wide picture on the wall or 2× 2meter bed on the floor, at all positions
in the scene.

2

2 Related Work

2.1 2D Object Detection

Object detection in computer vision started with detecting whether there is an object
in the image or not. For this task strong feature descriptors based on gradients were
used. The Histogram of Oriented Gradients (HOG) method from Dalal et al. [7]
detects people in images by accumulating the local gradients into more complex
features. Dalal et al. use a support vector machine (SVM) on top of the features to
predict the class label.

Strong object detection frameworks that use convolutional neural networks (CNN)
have been developed for images. There are two main approaches for object detection
on images, namely, region based methods and single stage detectors. Region based
methods split the object detection task in two sub-tasks. The first one is to predict
the area of an object in the image. In the literature this area is also referred to as
region proposal or region of interest (ROI). The area is represented as a bounding
box, which locates the object and encloses all pixels that belong to the object. The
second task is to predict one object class label for each ROI. Girshick et al. [8]
introduced Region CNN (R-CNN) to explore the capabilities of AlexNet [9] for the
object detection task. Selective search [10], which is an external algorithm, extracts
regions from the input image. A CNN that is similar to AlexNet extracts features
which are then used by a set of SVMs to predict the class label.

Fast R-CNN [11] and Faster R-CNN [12] improve R-CNN in terms of speed and ac-
curacy. Fast R-CNN speeds up the method by computing the object class predictions
in a single network instead of multiple SVMs and by sharing convolutions between all
proposed regions. Faster R-CNN replaces the external region proposal algorithm with
a dedicated CNN, that Ren et al. call region proposal network (RPN). Together the
RPN and classifier network form an end-to-end trainable network. Mask R-CNN from
He et al. [13] is the current state of the art network for object detection and instance
segmentation on images. It extends Faster R-CNN with a binary segmentation branch,
such that all pixels in a predicted box are further classified into background and object.

3

Single stage detection methods aim to make object detection usable for robotic
systems by achieving higher frame rates than region based methods. The unified
solution comes at a cost of accuracy as Huang et al. [14] describe in their comparison.
The single stage detection method YOLO from Redmon et al. [15] applies a fixed
coarse resolution grid to the input image. For each cell in this grid they predict one
object class label and two object bounding boxes. All predictions of YOLO can be
computed in one forward pass. Due to the fixed, coarse resolution grid, the detection
accuracy of YOLO is limited to a minimum distance between objects. Liu et al. [16]
tackle this problem by applying the grid to multiple feature maps in the network.
Since the receptive field increases for deeper layers, the object predictions are more
accurate for objects of different scale and size. Furthermore Liu et al. use an initial
set of boxes to guide the network in the box prediction.
Feature extraction for images hugely benefits from commonly used architectures,

like VGG [17] and ResNet [18], that are trained on big datasets like ImageNet.

2.2 3D Deep Learning

More recently, convolutional neural networks are applied to 3D data. There are
different approaches to represent and process 3D point clouds. The intuitive extension
of pixel grids to 3D are voxel grids. For object classification Dai et al. [5], Maturana
et al. [19] and Wu et al. [20] have applied CNNs with 3D convolutions on voxel grids.
Methods based on voxel grids however suffer from the cubic complexity of this data
representation, which limits their resolution. Hence other methods exploit the sparsity
of the data and define a new convolution operation for tree structures such as octrees
or kd-trees [1, 21, 22]. Just as the tree based methods, Qi et al. [23] and Tatarchenko
et al. [4] exploit the sparsity of the data. Qi et al. do so by per point processing and
global aggregation of point features through max pooling operations. Tatarchenko et
al. exploit the fact that the 3D point clouds are surface representations of the scenes
and achieve dense convolution operations by locally approximating the surface with a
plane.

2.3 3D Object Detection and Instance Segmentation

More works build up on the basic HOG method to use it in the 3D domain. Gupta
et al. [24] use HOG descriptors for image segmentation and object detection in

4

RGB-D images. Lang et al. [25] use an extended HOG descriptor to perform object
classification on data from LiDAR sensors. They solve the classification task with a
conditional random field and use a HOG related descriptor that is based on distances
between points and planes instead of gradients.

The methods that have been proposed to solve 3D object detection and instance
segmentation with deep learning can coarsely be divided into two categories. Into the
first category fall methods that use RGB-D data. Methods from the second category
work exclusively on point clouds. As stated before, image based object detection
methods strongly profit from established pre-trained models, such as VGG. There is
no comparable pre-trained model for 3D-only methods.

Song et al. implement the region proposal network of Faster R-CNN for the 3D
case, using 3D convolutions on a voxel grid [26]. For the classification step, Song et
al. extract features in parallel from voxels and image patches. They obtain the image
patches by projecting the 3D box into the RGB image of the scene and cropping it.
Both features from 2D and 3D are concatenated to predict a bounding box refinement
and the object class label.

The key idea of Qi et al. [27] is to avoid processing large 3D point clouds by
performing object detection on images in 2D. Subsequently they use these detections
as region proposals in 3D. By projecting the bounding boxes from the image into
the point cloud they obtain frustums. For the frustums they perform a binary
segmentation in order to distinguish between object and background. Predicting
objects in the image alleviates the complexity problem of large 3D scenes.

The voxel grid based processing of Song et al. is not efficient for large scenes
and is limited in resolution. Furthermore both methods rely on RGB data and the
transformation matrix to map between 2D and 3D. Hence these methods are not
applicable to data sets with unknown sensor poses.

The following methods solve object detection without using RGB-D. PIXOR is a
single stage approach to object detection, similar to SSD. In order to avoid the sparse
3D point cloud space, Yang et al. [28] transform the points into birds eye view (BEV).
They discretize the point cloud in BEV in order to process the data with a single
stage detection architecture for 2D data.

PIXOR is presented for the KITTY data set that contains cars pedestrians and
bicycles. In a top down view the appearance of these classes can be distinguished
well. For data sets with a higher number of classes, such as ScanNet and S3DIS, it
is not sufficient to consider only the top down view, since most of the information
comes from different view angles. Pictures and doors, and toilets and chairs are easier

5

to tell apart in the x-z or y-z plane.
All methods mentioned before follow a coarse to fine approach. Wang et al. [29]

chose a fine to coarse approach to solve instance segmentation. Their key idea is to
form clusters of similar points. Assigning a label to all points of one cluster creates an
instance segmentation for the point cloud. Additionally to the clustering, the network
outputs a semantic segmentation, which is used to assign a semantic class label to
all instances. This per point clustering makes the approach independent of any grid
structure. Wang et al. use the PointNet [23] and PointNet++ [30] architecture to
compute the similarity between all points. Since the similarity matrix is quadratic
w.r.t. the number of points, the efficiency of this method decreases for larger scenes.
Furthermore PointNet performs well on structured point clouds, such as ShapeNet
and S3DIS, where all rooms follow a similar structure. For unstructured point sets,
like ScanNet, where rooms vary a lot more in rotation and appearance, PointNet
loses most of its predictive power [31].
Our proposed 3D object detector combines the region based approach of Faster R-
CNN with the powerful concept of tangent convolutions. It operates on unstructured
point clouds and does not rely on RGB information.

6

3 Background

For our object detector in 3D, we need a suitable architecture and efficient 3D pro-
cessing. Faster R-CNN is a well established and accurate object detection method.
Tangent convolutions have shown efficient processing of big 3D scenes and strong fea-
ture extraction skills for semantic segmentation of point clouds. These two works are
the foundation of our proposed method. We therefore present a technical description
of all relevant parts in this background chapter.

3.1 Faster R-CNN

Faster R-CNN is part of the region based approaches for object detection. Region
based approaches solve object detection in two steps. The first is to split the original
image into smaller images, where each smaller image ideally contains exactly one
object. Unfortunately, the smaller images are not fail-safe. They can cover objects only
partially or at worst be incorrect and not contain an object at all. The second step,
classification, is to assign a label to each smaller image. Both steps are implemented
as CNNs.

Figure 1 shows the architecture of Faster R-CNN. It consists of the modules Region
Proposal Network (RPN) and Classifier. Both modules share the convolution layers
of a backbone CNN. Ren et al. [12] use the first thirteen layers of VGG as a backbone
network. The RPN tells the classifier where to look in the feature maps. For these
areas, which are displayed as rectangles, the classifier predicts the object class.

3.1.1 Region Proposal Network

The region proposal network replaces the external region extraction algorithm that
was used by Fast R-CNN. Because it operates on the feature map of a backbone
feature extraction network, it only has three convolution layers. The first layer in the
RPN convolves the feature map with a 3× 3 filter. On top of this layer operate two
1× 1 filters in parallel, which compute the predictions of the network, see Figure 2.

7

Figure 1: Faster R-CNN architecture overview that displays how the two modules
RPN and Classifier are connected via shared convolutions. Image source
[12].

The RPN solves a dense prediction task in a fully convolutional manner. The RPN
predicts rectangular object bounds (4 coordinates) together with an objectness score
(2 scores) for each pixel in the feature map. Objectness is a binary measure that
specifies, whether a bounding box located at a certain position contains and object or
not. The rectangular object bounds are encoded by their lower left and upper right
point.

Anchors Objects in images appear in different sizes and aspect ratios and so do
the boxes that surround all pixels of the object. Therefore, the RPN simultaneously
predicts multiple boxes per feature map pixel. At most k boxes are predicted per
position, such that the output is 2k objectness scores and 4k box coordinates. Each
predicted box is related to a candidate box that is positioned at every pixel in the
feature map. The candidate boxes are called anchors. The four predicted values
per k are parameters for center point (x,y), the width and the height of the anchor.
Figure 2 shows the correspondence between the RPN prediction and anchors. Nine
anchors are positioned at each pixel in the feature map, such that the pixel is at the
center of the anchor. The anchor boxes appear in three different scales and three
different aspect ratios to cover diverse objects in the image. For a feature map of

8

Figure 2: Region Proposal Network with anchors boxes. Two parallel 1× 1 convolu-
tions perform a box-regression and objectness classification for each pixel
in the feature map. Image source [12].

width W and height H this results in WHk anchors. Anchors are candidate boxes
and the RPN has to predict, whether these candidates are reasonable or not.

Loss As described in the anchor section, the RPN simultaneously predicts 2k scores
(pi) and 4k refinements (ti), which corresponds to the number of possible objects per
position. The targets that the network should learn for the objectness are computed
in the following paragraph. The refinement targets t∗ are defined in Equation (4).
In order to train the region proposal network, each anchor is assigned a binary class
label p∗i which relates to the objectness. Whether an anchor is considered positive
or negative depends on its intersection over union (IoU) with a ground truth box.
All anchors that have an IoU greater than 0.7 are considered positive as well as all
anchors with the highest IoU per ground truth box. Negative anchors are those with
an IoU lower than 0.3. Anchors with an IoU in the range between 0.3 and 0.7 do not
contribute to the RPN training.

The objective function that is minimized in the RPN training is the multi-task
loss L({pi}, {ti}). It combines the binary classification loss Lcls used for objectness
prediction and the regression loss Lreg, which is used for box refinements:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i)

+ λ
1

Nreg

∑
i

p∗i ∗ Lreg(ti, t∗i),
(1)

9

where pi is the predicted probability that anchor i contains an object and p∗i is the
ground truth objectness label, 0 for negative anchors, 1 for positive anchors. The
classification loss is a binary log loss Lcls(pi, p∗i) = −log(1− (|p∗i − pi|)). It is summed
for all positive and negative anchors i that contribute to the loss.

Both loss terms in Equation (1) are normalized by factors 1
Ncls

and 1
Nref

and
balanced with a parameter λ. These are set to Ncls = 256, Nref ∼ 2400 and λ = 10,
such that both loss terms contribute roughly equally to the multi-task loss. However,
the RPN training is insensitive to a wide range of values for λ.

The regression loss only considers refinements for positive anchors, where p∗i = 1.
It is defined by Girshick [11] as the smooth L1 loss over the difference between
refinements:

Lreg(t, t
∗) =

∑
j∈x,y,w,h

smoothL1(tj − t∗j), (2)

in which

smoothL1(x) =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise.
(3)

The vector ti contains the predicted refinement values that correspond to the four
box coordinates. Similarly, the vector t∗i denotes the parameterized refinement values
between the positive anchor and ground truth box. These are defined as follows:

tx = (x− xa)/wa, t∗x = (x∗ − xa)/wa, (4)

ty = (y − ya)/ha, t∗y = (y∗ − ya)/ha,

tw = log(w/wa), t∗w = log(w∗/wa),

th = log(h/ha), t∗h = log(h∗/ha),

where tx and ty denote the difference between the predicted box center (x, y) and
the anchor box center (xa, ya). tw and th denote the ratio between the box width
and anchor width, height respectively. tx and ty are normalized by the anchor width,
tw and th are log normalized, such that the refinement values are within a range of
roughly [−1, 1]. These refinements are computed between the ground truth and the
anchor boxes in the same way, see right column.

Training Negative anchors, which do not sufficiently overlap with an object in the
image, typically dominate the positive anchors. In order to focus the RPN training on
both, positive and negative anchors, it is trained on a limited set of 256 anchors per
image, with an equal split between positive and negative. Random sampling is used

10

to select 128 anchors of each type, if there are more than 128 of either type. If there
are less than 128 positive anchors, the free spots are filled with negative anchors.
The backbone architecture is initialized with a set of weights which have been

trained on the ImageNet dataset. The three convolutional layers of the RPN are
initialized with random weights.

The RPN is trained end-to-end on 80000 images of the PASCAL VOC dataset with
a momentum of 0.9, weight decay of 0.0005 and a learning rate of 0.001, which is
lowered to 0.0001 after 60000 images. Stochastic gradient descent is used as optimizer.

3.1.2 Classifier

Figure 3: Architecture of the Fast R-CNN classifier on gray background that is used
in Faster R-CNN. Note that the RPN of Faster R-CNN replaces the ROI
projection part on the left and provides the feature map together with
region proposals. Image source [11].

Architecture. The classifier network predicts a class label for each region of interest
from the RPN of Faster R-CNN. Furthermore, it shares the convolutions of a backbone
network with the RPN. The last convolutional feature map together with a region
proposal (between the image and gray box) is displayed in Figure 3. The classifier
architecture is shown on top of gray background. The features within the region
of interest are max pooled into a grid of fixed size and further processed by two
fully connected (fc) layers, before two dedicated fc layers predict the softmax class
probabilities and the box regression. The classifier predicts a box refinement, like the
RPN, to tighten the detection box around the object. The features between the RPN
and the classifier network are shared, which enables the classifier to reason about the

11

proximity of the object.

ROI Pooling. Classification requires aggregation of information over the whole ROI,
which is done with fc-layers. Predicted ROIs vary in the number of features that
they contain, but fc-layers require a fixed size input, which is why the ROIs are max
pooled into a grid of fixed size (e.g., 7× 7).

Loss. The loss function L(p, t) of the classifier is similar to the loss of the RPN in
Equation (1), with the one difference that the classification loss is now computed for
multiple class predictions.

L(p, t) = Lcls(p, p
∗) + λ[p∗ ≥ 1]Lreg(t, t

∗), (5)

where p is a vector of class predictions and p∗ is the corresponding ground truth.
Similar to the multi task loss of the RPN as in Equation (1), the refinement loss only
considers boxes whose ground truth class p∗ is not the background label 0.

3.1.3 Joint Training

The classifier and RPN share features of the same backbone network, which requires
the backbone to extract suitable features for both tasks. Furthermore the classifier
depends on good region proposals. In order to jointly optimize the three networks,
they are trained in an alternating fashion using four steps. The training benefits from
initializing the backbone network with an ImageNet-pre-trained model, which is used
in step 1 and 2. Step

1. Train the RPN while keeping the backbone weights fixed.

2. Train the classifier on the RPN proposals while also updating the backbone
weights.

3. Use the backbone from step 2, fix its weights and finetune the RPN.

4. Use the backbone from step 2, fix its weights and finetune the classifier.

3.2 Tangent Convolutions for dense prediction in 3D

Depth sensors sample only the surface of objects. Consider a sphere as in Figure 4, the
point cloud for the sphere will consist of points from the surface, not from the interior.

12

3D grid convolutions do not exploit this sparsity of the point clouds and still process
the whole volume of the sphere, which makes them memory- and speed inefficient for
large scenes. Tatarchenko et al. [4] therefore extend the 2D convolution operator to
work on local surface structure. Tangent images are used as a representation of local
surface structure. They are computed for every point in the point cloud and contain
the projected neighboring points onto the tangent image plane. Such a tangent image
is displayed in Figure 4. Computing this for every point on the sphere creates a set
of tangent images, which represents the whole sphere with local views. The tangent
images are directly related to the point cloud and their structure and can therefore
be precomputed. This allows an efficient implementation of a convolutional neural
network (CNN) that is based on tangent convolutions.

j

i

ui

O

p

np

Figure 4: Schematic example of one tangent image for a sphere. The vectors i and
j span the tangent image plane.

Tangent plane estimation. Only the local neighborhood of a point contributes to
the tangent image at this point. The neighborhood of a point p from the point cloud
P = {p} is defined as a sphere with radius R around the point, thus all neighbors q
satisfy ||p− q|| < R. The orientation of the tangent image is determined by three
vectors i, j and np. These are the eigenvectors of the covariance matrix C =

∑
q rr

>,
where r = q− p. The vectors i and j correspond to the largest two eigenvalues and
span the image plane πp, see Figure 4.

13

Convolving a tangent image. The tangent image, as displayed in Figure 4, is a
raster image that is convolved with a 2D kernel. This convolution X(p) at point p
is defined as the matrix multiplication of a kernel c(u) with the signals S(u) of one
tangent image:

X(p) =
∑
u

c(u) ∗ S(u), (6)

where u ∈ R2 is a pixel in the tangent image. The signal S(u) stands for a value like
color, height or abstract features. The following paragraph describes how to map the
signal of a point F (p) to the pixel signals.

Signal interpolation. The mapping S(u)→ F (p) happens in two steps. The first
step is to project the points q (blue points) onto πp by multiplying them with the
vectors i, j. The points on the image plane (black points) are denoted as v, where
v = (i>r, j>r). The projected points v inherit the signals:

S(v) = F (p). (7)

The projection from above is displayed as continuous- and the projection from below
the image plane is displayed as dashed line in Figure 5.

p

Figure 5: Mapping the point signals F (p) to the pixel signals. Projection is shown
between blue and black points. The nearest neighbor interpolation between
black points and the cell centers is shown as gray arrows. Note that p is
the nearest neighbor of the center cell. Figure reproduced from [4].

The second step is to assign each cell in the tangent image a signal from a point v:

S(u) =
∑
v

w(u,v) ∗ S(v), (8)

14

where w(u,v) is a kernel weight, that determines the influence of v on u. For the
nearest neighbor (NN) interpolation, which Tatarchenko et al. use, w becomes

w(u,v) =

{
1, if v is u’s NN
0, otherwise.

(9)

The nearest neighbor interpolation is displayed in Figure 5 in form of gray arrows,
which point from the nearest point v to the cell center.

Tangent Convolution Layer. This paragraph describes how the tangent convolution
defined in Equation (6) can be used efficiently in a convolutional neural network. The
signal sharing between u and any point p from the point cloud depends only on the
point cloud structure. For simplification, the relation between u and p is summarized
in the selection function g(u), which can be precomputed. Consistently the signal
at p, which is returned by g(u), is denoted as F (g(u)). Figure 6 shows the main
components of an efficient implementation of a tangent convolution layer. Fin is the
input to a tangent layer, where N is the number of points and Cin represents the
input channels per point, like a red, green and blue value for color. During runtime,
the precomputed indices I from g(u) are used to assemble the point signals in the
matrix M. The tangent images are represented as a flattened vector L = l ∗ l, where
l is the filter size.

Figure 6: Tangent convolution layer. Image source [4].

All the features in one tangent image are convolved with a kernel of the same size
as the tangent image. This results in a new feature that corresponds to the center
point p of the tangent image. Hence, succeeding tangent convolution layers reuse
the indices I to assemble M with the previously computed features. By default, the
depth of the convolution kernels equals Cin and the number of kernels that are used
determines Cout.

Depth feature. The local depth feature is defined as distance to the tangent plane πp.
This distance of a point q to the tangent plane in p is computed by d = np

>(q− p),

15

where np is the normal vector of πp. In contrast to other features like height above
ground, depth does not depend on the point itself, but rather on the tangent image.
Since one tangent image is defined per point, one point contributes to multiple tangent
images as a neighbor. This is displayed in the 2D case in Figure 7. Note how the
depth feature (dashed line) of p1 changes for different tangent planes πp2, πp3, πp4.
Therefore the index matrix I cannot be used to assemble the depth features. Instead,

p1

p2 p3
p4

p5

(πp2)

p1

p2 p3
p4

p5

(πp3)

p1

p2 p3
p4

p5

(πp4)

Figure 7: The depth feature cannot be assembled with the index matrix I, because
the depth feature of a point depends on the tangent image. Instead,
the depth images are precomputed and fed to the network as an extra
channel. Schematic display of the distance feature and its dependency
on the tangent plane. The distance of p1 changes for tangent planes π in
points p2,p3,p4.

the depth is precomputed for each tangent image pixel and added to the intermediate
tensorM as an extra channel. This needs to be done only once for the first convolution
layer, as the subsequent convolution layers process abstract features.

Pooling. It is common in convolutional neural networks to spatially aggregate
features by inserting pooling layers between convolutional layers. Pooling in the
tangent convolution setting is defined on a regular grid, not on tangent images. In
each pooling layer the step width of the grid increases by a factor of two. Assuming
a pooling filter of size 2× 2× 2 and at most one point per grid cell g (ensured by
initial downsampling), then there is a set νg of at most 8 points from the point cloud
P = {p}, that contributes to a single grid point. Similarly for the point features:

p′g =
1

|νg|
∑
p∈νg

p and F ′(p′g) =
1

|νg|
∑
p∈νg

F (p). (10)

In order to maintain linear complexity in the number of points during runtime,
Tatarchenko et al. precompute an index matrix I with Nin × 8 that contains the
indices of all points, which contribute to the same grid cell. Using an index matrix
for pooling follows the same process of Figure 6. Using I, an intermediate tensor M

16

with size N × 8× C of the input features can be assembled. 8 features of one point
are reduced to one new feature in the output feature map Fout with N × C. Note
that pooling does not change the depth C of the feature map.
Since pooling changes the point positions in the point cloud, the index matrices,

which are used in the convolutional layers need to be computed once for each pooling
layer.

Unpooling. Unpooling is used in segmentation networks to increase the spatial
resolution in the decoder network part. The pooling indices are shared with the
unpooling layers. The indices are used in reverse to copy the features of the low
resolution point cloud to points in the higher resolution point cloud.

Architecture. The architecture, see Figure 8, follows a U-shaped encoder decoder
network for semantic segmentation. There are two pooling and two unpooling layers
in the network. Features from the encoder are propagated to the decoder via skip
connections. Before each pooling layer, two convolution layers with kernels of size
3× 3 are applied to the tangent images. Each convolution layer, except the last one
is followed by a leaky ReLU activation function with a negative slope of 0.2. The
last convolution layer applies 1 × 1 convolutions to predict a class label for each
point. The network is trained using the Adam optimization procedure with an initial
learning rate of 10−4.

Figure 8: The architecture used by Tatarchenko et al. is inspired by the U-Net
architecture from Ronneberger et al. [32], but uses tangent convolution
layers as the main building block. Image source [4].

17

4 Approach

RPN Classifier... ROI Align

Figure 9: Our architecture is composed of three parts: The region proposal network,
the ROI Align layer and the classifier network.

We solve the object detection task for 3D data with the architecture shown in
Figure 9. Our architecture follows the principle of region based object detection
approaches. Region based approaches, as described in Section 3.1, extract regions of
interest (ROIs) and then classify them. Our pipeline takes a point cloud as input. The
first block is our 3D region proposal network (RPN), which uses tangent convolutions
for efficient processing. ROIs are represented as bounding boxes in the point cloud.
The RPN predicts their positions and refinements. As a last step, our classifier
network assigns a class label to each proposed region. The result of the proposed
architecture is a set of boxes with class labels, where each box encloses an object in
the input point cloud.

4.1 Region Proposal Network

The RPN operates on the whole scene, which is represented by the point cloud, and
tries to find volumes that contain single objects. It does so by extracting features
from the point cloud in three convolutional blocks and two pooling layers. Within
these layers, local features are aggregated into bigger, more complex ones that make

19

RPN
class scores

regression values

c1 + c2 c3 + c4 c5 + c6

Figure 10: Region Proposal Network architecture. The RPN extracts features by
applying six convolutions, one for each feature map, and two average
pooling steps. The feature maps are represented as vertical blocks, with
the corresponding convolutional layer below.

it possible to reason about objects. The features from the last convolutional block are
used to predict class scores pk and regression values tk. The RPN does not predict
box coordinates. Instead, we parameterize the RPN predictions relative to a set of k
boxes, which are called anchors. The class score pk is the probability that the anchor
box k contains an object. The regression values tk are used to better fit boxes to
objects.

Tangent convolutions are used to efficiently process the whole scene. The feature
extraction corresponds to the encoder graph that was used by Tatarchenko et al. [4]
in the semantic segmentation network. Each convolutional block contains two convo-
lution operations with 3× 3 filters. After each block, the features are pooled into a
lower resolution. This increases the receptive field of the CNN. The receptive field
size of the RPN is big enough to cover most objects in the scenes. The receptive field
describes the part of the point cloud that is visible to a neuron. The receptive field is
the same for all neurons in one layer. In the first layer, the receptive field corresponds
to the search radius r that is used to construct a tangent image, see Section 3.2. As
we stack convolutional layers s, the receptive field increases linearly (here s = 2 per
convolutional block). For pooling layers the receptive field increases exponentially. In
the tangent convolution case, r doubles in each pooling layer. For an initial search
radius r = 5cm, one tangent image covers 2r = 10cm of the point cloud. For the
whole CNN this sums up to 2 ∗ 10cm+ 2 ∗ 20cm+ 2 ∗ 40cm = 140cm as Tatarchenko
et al. describe in [4].

The features from this encoder are used for two predictions: the class score and
the refinement values. Both are predicted for every location by performing two 1× 1

convolutions.

20

4.1.1 Anchor Definition

We use anchors as in Faster R-CNN (Section 3.1) and define them in 3D space.
Designing anchors for 3D is more difficult than 2D, due to the additional degree
of freedom and the different representation of data. Point clouds are a sparse
representation of a scene, whereas images consist of a dense grid of pixels.

Global Positioning. The information in an image is stored in a grid. Therefore it
is straightforward to position anchor boxes at grid cells, to cover multiple locations
in the image. For the continuous 3D space, which point clouds span, such a grid is
not available by default and as motivated in Section 4.1, we do not impose one for
efficiency. Instead of using a grid, we position the anchor boxes at the points from
the point cloud. Since the RPN performs a per point prediction in the feature map,
we use the point positions that correspond to the last feature map.

Figure 11: The anchor box is represented by its three backward facing sides. The
three colored points represent: Red lower left corner, Green upper
right corner, Yellow center.

Relative Positioning. Figure 11 visualizes three possible ways to position a box
relative to a point. We can consider the point being the center of our anchor box
(yellow) or we can consider the point being the corner of the anchor box (red and
green). Our goal is to position the anchor at a point, such that it surrounds all points
that belong to the same object. This is a difficult task for 3D surface scans. First of
all, some objects, like tables, naturally do not have points at their geometric center.
Moreover, most of the objects from real world scans are partially occluded. So there
are no points of the object at the ideal anchor box corners.

Ground truth box design. Scenes and objects appear in many rotations, but the
ground truth bounding boxes are, by design, aligned with the global coordinate
system. If the room is rotated, then all bounding boxes change their sizes. In addition

21

Figure 12: Schematic bounding box positioning for a door like object in different
rotations.

to the relative positioning problem, this further complicates the alignment of the
anchor boxes with the ground truth boxes on the basis of points. This is shown in
a schematic view of a door in Figure 12. The ground truth bounding box spans
all points of the object. In case the main direction is not the same as one of the
coordinate system axes, the bounding box size increases a lot. Defining the main
direction of an object is not always possible. It is difficult, e.g., to determine the main
direction of a chair. Figure 12 shows a schematic view of a door with its ground truth
box from the top down / birds eye view. This schematic demonstrates how the size
of the bounding box changes, as the door appears in different rotations. Furthermore,
we see the reference points needed for the box in green. In the fourth case, no point
of the object is close to one of the reference points, which makes it very difficult to
get an anchor at a reasonable position. In addition to the anchor positioning problem,

(a) Vertical (b) Diagonal (c) Horizontal

Figure 13: The three images show the difference in object appearances for three
rotations relative to the coordinate system.

22

the appearance of the same object changes for different rotations. Figure 13 shows
this for a bed. Note how the point cloud for a diagonally rotated bed (b) includes
more surrounding structure than a rotation that is aligned with the grid (a,c).

Appearance. The bounding boxes of the objects vary greatly in size and aspect
ratios. Pictures and doors are thin objects, whereas big objects, like tables and beds
are wide and not so high. One anchor is not enough to cover all the objects with a
sufficient overlap. Therefore, we design multiple anchors at one location, covering
different scales and aspect ratios.

1.0m

1.0m

1.0m

2.0m

1.0m

1.0m

1.0m

1.0m
2.0m

1.0m

2.0m

1.0m

0.5m

0.5m
0.5m

1.0m

0.5m
0.5m0.5m

0.5m
1.0m

0.5m

1.0m

0.5m

1.5m

1.5m

1.5m

Figure 14: Standard boxes that are used as anchors.

Figure 14 shows the standard anchor set, for which we use the standard sizes 0.5,
1.0, 1.5 and 2.0 meter and use them arbitrarily for the x, y and z dimension of the
box.

4.1.2 Training

Instead of predicting box coordinates or box sizes freely in the room, the RPN relies
on anchors as reference boxes. Regressing both, the position and the size of the box
in the scene is too difficult for the network. Therefore, we relax the problem into a
classification task (object at position or not) and an easier refinement task, which
predicts how the box associated with this location should be changed to enclose the
object tightly. The RPN predicts the objectness and refinement for each point in the

23

point cloud. We use the term objectness to describe the RPN prediction of object
locations. For training the RPN on the classification and regression task, we need to
compute targets from the anchors and ground truth boxes.

For the objectness targets p∗, we consider a set of anchors A = {a} and compute
the Intersection over Union (IoU) between them and all ground truth boxes G = {g}.
IoU is a measure to describe the overlap of two boxes. If the intersection of the
boxes equals their union, then the boxes are equal in shape and position. The IoU
u is computed per box u = a∩g

a∪g . We mark all anchors with an IoU greater than a
threshold as positive (A+ = {a}, ∀u > 0.5). Similarly, we classify all anchors with
an IoU smaller than a threshold as negative (A− = {a}, ∀u < 0.3). The anchors
with IoU values between these thresholds overlap with an object too much to be
classified as negative, but too little to be classified as positive. These anchors do not
contribute to the training. Caused by the imbalance of points and objects, negative
anchors occur more often than positive anchors. Thus, we limit (M) the number of
positive and negative anchors and balance their quantities using random sampling.
All remaining positive and negative anchors contribute to the objectness training,
where P ∗ = {A+, A−}. We use a standard cross entropy loss for the objectness
prediction.

Lcls(p, p
∗) = −(p∗ ∗ log p+ (1− p∗) ∗ log (1− p)). (11)

Predicting the refinements is a regression problem. Refinements are the parametriza-
tion t at a location between a box b> = [x, y, z, w, h, d] and the ground truth box
g∗> = [x∗, y∗, z∗, w∗, h∗, d∗], relative to an anchor a. We compute the refinements for
all positive anchors.

tx = (x− xa)/wa, t∗x = (x∗ − xa)/wa, (12)

ty = (y − ya)/ha, t∗y = (y∗ − ya)/ha,

tz = (z − za)/da, t∗z = (z∗ − za)/da,

tw = log(w/wa), t∗w = log(w∗/wa),

th = log(h/ha), t∗h = log(h∗/ha),

td = log(d/da), t∗d = log(d∗/da).

In order to get an IoU of one between the predicted box b and g, the center of
the anchor, xa, ya, za, needs to be shifted to the center of the ground truth box,
x∗, y∗, z∗. Furthermore, the width, height and depth of the anchor need to be scaled
to match the ground truth box size. For the refinement ground truth, the center

24

shifts are computed for all three dimensions. These are normalized by the length
of the anchor in each direction wa, ha, da. The targets for scaling the predicted box
(t∗w, t∗h, t

∗
d) is given by the ratio between anchor and ground truth box per dimension.

The logarithm is applied to the ratios for normalization. The normalization helps in
the learning process as neural networks perform best for values that are in a fixed
range for all samples, for us these are -1 and 1. The smooth L1 loss is defined by
Girshick [11] in Equation (3).

Lreg(t, t
∗) =

∑
j∈x,y,z,w,h,d

smoothL1(tj − t∗j), (13)

We combine the classification loss, Equation (11), and the refinement loss, Equa-
tion (13) in the multi-task loss:

L({pi}, {ti}) =
M∑
i

Lcls(pi, p
∗
i) +

M∑
i

p∗i ∗ Lreg(ti, t∗i), (14)

where p is the objectness prediction and t is the refinement prediction. The loss is
computed for all target locations i ∈M in the point cloud.
Since we use multiple anchors per position, the network has to predict multiple

objectness scores and refinements. When k is the number of anchors per location,
the RPN predicts 2 ∗ k output scores for the objectness and 6 ∗ k refinements.

4.2 Classifier

4.2.1 Architecture

The task of the classifier is to predict a label separately for each region proposal box
from the RPN. Therefore, we cut all points within the proposed box and give them
to the classifier as input. The classifier extracts features from these points with the
aid of several convolutional blocks and pooling layers. The pooling layers aggregate
local features into more complex ones and increase the receptive field. This first part
corresponds to the Tangent Convolution encoder graph from Figure 8. In order to
classify the content of the proposed box, the classifier needs to aggregate information
over the entire volume. Therefore we add two fc layers to the network, see Figure 15.
Because they are fully connected to all features of the previous layer, they can reason
about the whole volume and make a prediction of the possible class labels.
The size of the proposed box and the number and location of points in each box

25

c1 + c2 c3 + c4 c5 + c6 fc1 + fc2

convolutional blocks

class scores

Figure 15: The classifier architecture that we propose uses three convolutional blocks
with two pooling layers in between them for extracting and aggregating
features. Similar to the tangent convolution pooling operation, we use
an index matrix to aggregate features in a unified way before the fc
layers.

vary across region proposals. This is harmful for a unified, structured assembly of
information in the fc layers.

In analogy to images, where the pixel grid enables a standardized way of assembling
information, we compute a raster for the ROI point clouds. Before the first fc layer,
we assemble all features according to the raster indices.

The ROI alignment procedure in Section 4.3 describes the steps in detail that are
necessary to make the RPN and the classifier compatible, such as computing the
raster.

4.2.2 Training

In our pipeline the classifier network operates on the proposed boxes from the RPN
and predicts multiple classes. We train the classifier on ROI predictions from a RPN
that has been trained until convergence. We ensure that the ROI predictions have at
least 0.1 IoU with a ground truth box. Then we assign the ground truth label to the
ROI based on the maximal IoU value. We ensure that the classifier is trained and
evaluated on regions that are extracted from scenes of the training and testset of the
RPN. During training, the multi class classification loss (cross entropy) is minimized:

Lmulti_cls(p, p
∗) = −

C∑
c=1

p∗c ∗ log(pc), (15)

where vector p contains the predicted probabilities for all class labels {c} and p∗ is a
one hot encoded vector of the ground truth class label. We use Adam as optimizer
with a fixed learning rate of 10−4.

26

4.3 ROI Alignment

As explained in Subsection 4.2.1 the classifier needs unified input point clouds across all
regions proposals. Like in images, we use a grid of a fixed size and step width to enable
consistent information aggregation over all ROIs. We span the grid from the center
of the coordinate system to four meter in each dimension (W = H = D = 4 meter)
and use a step width of 10cm in the initial resolution. The classifier predicts labels
independently from the ROIs position in the room, so we shift all points within the
ROI, such that the lower left corner of the ROI is at the center of the coordinate
system. The difference in object sizes is an important information in the data.
Therefore we do not scale the objects to fit the dimensions of the grid. All points that
exceed the limits of the grid in any dimension are removed. Their information is lost
to the classifier network. An analysis of the ScanNet objects shows, that this affects
less than 0.65% of all objects. The design of this grid satisfies three requirements.
First, it is big enough to cover large objects. Second, the step width (cell size) is
small enough to represent small objects well enough for classification. Third, the
resulting number of cells is not too large. 4m

0.1m = 40 cells in each dimension. After
two pooling layers the step width increased to 40cm, which results in 10× 10× 10

voxels that are processed with the fc layers.
The ROI Alignment step uses the precomputations of tangent convolutions to

average pool the points within the ROI into the grid cells. In contrast to the tangent
convolutions approach we now store the voxel indices together with the point indices
and extend the voxel indices by those who do not contain any points. Note that this
is crucial for the standardized assembly of features. We unroll the voxel grid that
corresponds to the point cloud after the second pooling layer into a 1×Nout vector,
where Nout = 103. Each position (voxel) in this vector contains the point index or an
empty cell label. This is our precomputed index vector I, compare Figure 6. During
runtime, we use I to assemble the intermediate matrix M, which is of size Nout × C
from the feature map Fin. M is then convolved with the weights of the first fully
connected layer.

27

5 Experiments

We evaluate the performance of the presented approach on the task of 3D semantic
instance segmentation. We provide results of our method on two real world data sets,
together with qualitative and quantitative results for single components and compare
our results to the leader board of the ScanNet 3D instance segmentation benchmark.

5.1 Datasets

For training and evaluating our models we used three datasets. ScanNet and S3DIS
are used for the evaluation of our object detection method. We use ShapeNet to test
our classifier network on artificial data. Figure 16 shows rooms of both real world
data sets.

(a) ShapeNet (b) ScanNet (c) S3DIS

Figure 16: (a) Example object from ShapeNet. (b) Example room of ScanNet.
(c) Example room of S3DIS.

ShapeNet [33] is a large data set of artificial, 3D CAD models. The objects
are represented as meshes. To transform them to point clouds, we use poisson
disc sampling (PDS). For each model we sample as many points as it has faces,
but minimum 25,000. PCD ensures that the points are evenly spread across the
object. Just like laser scans, only the surface of a model is sampled. From the whole
ShapeNetCore model database we sample a subset of six model classes. Some model
classes occur more often then others. We balance the class frequencies by removing

29

models from the more frequent ones. The balanced class frequencies are within 10%
to 20%. We split our data into a training and test set, such that no model is present
in both of them. we manually ensure that the class frequencies in the training and
test set are similar.

ScanNet [5] contains more than 1500 scans of real world scenes. All scans are
annotated with instance level semantic segmentations for 20 classes. The scenes of
ScanNet are not aligned, i.e., rooms are not aligned with the coordinate system,
which makes it the most complex data set for indoor scene understanding. On top
of that the ScanNet team started a benchmark challenge for instance segmentation
of 18 classes. Methods that submit to their leader board are evaluated against a
non-public test set. In addition to the 3D point clouds, ScanNet also provides 2.5
million images for the scenes. So methods that publish on the leader board are not
limited to 3D only. We use the train, validation and test split that is provided by the
authors of ScanNet.

Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) [6] provides surface
scans of 272 indoor scenes together with 3D semantic instance labels for 13 classes.
S3DIS consists of 6 areas, as suggested by the authors, we use Area 5 for testing and
the other areas for training.

5.2 Evaluation metrics

We perform a point-based evaluation of the predictions. Each point can end up in
one of the following categories:

1. True Positive (TP),

2. True Negative (TN),

3. False Positive (FP),

4. False Negative (FN).

For the example case of predicting, whether there is an object at a position or
not, the types illustrate that: the object presence is correctly predicted (TP) or the
absence of an object is correctly predicted (TN) or we falsely predicted an object to
be present (FP) or we falsely predicted the absence of an object (FN). Following the
conventional protocol, we use multiple standard evaluation metrics.

30

Accuracy. The accuracy is the proportion of correct predictions.

A =
TP + TN

TP + TN + FP + FN

Overall Accuracy. We report the overall accuracy when examining the classifier
performance.

oA =
TP

TP + TN + FP + FN

Precision. The precision points out how accurate the method is at predicting
positives.

P =
TP

TP + FP

Recall. The recall points out how many of the ground truth positives the method
under test can identify.

R =
TP

TP + FN

IoU Intersection over Union is used to measure the overlap between two sets A and
B. The IoU is typically computed for boxes, in the object detection task, and for
points, in segmentation tasks.

IoU =
Intersection

Union
=
A ∩B
A ∪B

We report IoU values for boxes, when we test the overlap between anchors and ground
truth boxes. The evaluation on the ScanNet benchmark is for instance segmentation,
thus reports mean Average Precision for point IoUs.

Average Precision (AP). We use the Average Precision from the ScanNet Bench-
mark evaluation. Average precision values are reported for IoU values of 25%, 50%
and in the range [0.5 : 0.95 : 0.05] AP. This means that a detection only counts as
TP if it sufficiently overlaps with the ground truth box.

AP =
1

N

N∑
r

P (r),

where N is the total number of recall values r and P (r) is the precision value at this
recall.

31

Mean Average Precision (mAP). We report the mAP as the average over the per
class AP.

mAP =
1

C

C∑
c=1

AP (c).

The ScanNet instance segmentation benchmark evaluates the performance of methods
based on points. Our method predicts bounding boxes around objects. In order to
compare our method on the instance segmentation benchmark, we propagate the
box label to all pixels within the box. Some objects in the point cloud overlap along
the z-axis, e.g., chairs and tables. The detection box of a table cannot exclude the
points that belong to the chair from the label assignment and therefore introduces an
error. Figure 17 shows that the AP for 25% IoU of most classes is not or only slightly

ca
bi

ne
t

be
d

ch
ai

r
so

fa
ta

bl
e

do
or

win
do

w

bo
ok

sh
el

f

pi
ctu

re

co
un

te
r

de
sk

cu
rta

in

re
fri

ge
ra

to
r

sh
ow

er
 cu

rta
in

to
ile

t
sin

k

ba
th

tu
b

ot
he

rfu
rn

itu
re

0

0.2

0.4

0.6

0.8

1

AP

AP 50

AP 25

Figure 17: When evaluating the object detector on the instance segmentation
benchmark, we wrongly classify points of overlapping objects. This plot
shows the evaluation scores for instance masks produced by ground truth
boxes.

affected. The more restrictive the IoU value is, the more impact the wrongly labeled
points have on the AP values. Furthermore, we see that the error correlates with the
classes. Shower curtains are the least affected, whereas desks are affected the most.

Table 1 shows that over all classes the average precision declines to 45.8%. These
are the scores that our current object detector can maximally achieve on the ScanNet
Benchmark.

32

mAP mAP 50% mAP 25%

0.458 0.784 0.952

Table 1: Mean AP values for instance masks produced by ground truth boxes
evaluated on the ScanNet instance segmentation benchmark. AP at IoU
25% is slightly affected by the inaccurate point labelling. The more
restrictive the IoU values are, the bigger the impact of the wrongly included
points.

5.3 Region Proposal Network

As described in the approach chapter, the RPN uses anchors as an initial uninformed
guess about objects in the scene. Predicting region proposals corresponds to predicting
whether there is an object of a certain size, which is determined by the anchor, at a
certain location. Since the standard anchors cannot perfectly match all objects in the
scene, there is also a refinement module. This makes anchors an important parameter
of the network. In the following subsections we experiment with the appearance,
number and positioning of anchors.

5.3.1 Anchor Appearance

In this experiment we test whether it is important to make the anchor design dependent
on the object dimensions. Therefore, we tailor the appearance of the anchors to the
mean shapes of the ground truth boxes per object class. Afterwards, we compare the
performance of the RPN for the standard anchor set defined in Section 4.1.1 and the
tailored anchors.

Figure 18 shows the mean and the standard deviation for the length of the bounding
box in the x, y and z direction per class. This plot integrates data for all bounding
boxes in ScanNet, this includes rotations of objects. The bars depict the mean values
in meter. The single gray lines, which are centered at the mean values, depict the
standard deviation.
Big standard deviations stand for diverse object appearances. The standard

deviations are in general smaller for the z-values, than for the x- and y-values, because
rotations of the room and objects themselves increases the variance in the x- and
y-direction, but not in the z-direction. In contrast to this, refrigerators have a square
base area and vary mostly in the height. Furthermore we see from the diagram that
chairs and toilets are about the same size and can therefore be covered with one
anchor box.

33

tab
le be

d

cou
nte

r

cur
tai

n

ba
tht

ub

bo
oks

he
lf

cab
ine

t
cha

ir
toi

let

wind
ow do

or

ref
rig

era
tor

pic
tur

e
de

sk sin
k

sho
wer_

cur
tai

n
0.0

0.5

1.0

1.5

2.0

2.5
le

ng
th

X Y Z

Figure 18: The size of the bounding boxes for each dimension. Averaged over the
whole ScanNet data set. Mean shape of a bounding Box per class. The
error bars in light gray depict the standard deviation for each bounding
box dimension.

There are three cases that we need to consider when we design tailored anchors.
Imagine two pictures whose bounding boxes have the same size. The pictures are put
onto perpendicular walls. In this case the width (x-value) and the depth (y-value)
are swapped. Thus we introduce an averaging error for our mean shape bar chart.
This means that although the x- and y-value in the bar chart are similar for picture
objects, we should still design tight boxes for both directions. In the case described
above, the bounding boxes have the same size. There are however many objects of
the same object class which vary greatly in size. Since the bar chart only displays
mean values per dimension, manifold appearances of objects are averaged. Examples
for this case are long and short tables, and, chairs with and without legs. These
multi-modalities are visible in the per object class distribution of box sizes. Figure 19
shows this for chairs and bookshelves.

Figure 20 shows that bounding boxes are always drawn relative to the coordinate
system in a scene from ScanNet. The left room is aligned with the coordinate system

34

0.007 0.305 0.604 0.903 1.201 1.500
Length

0

200

400

600
X
Y
Z

(a) chair

0.009 1.503 2.996 4.490 5.983 7.477
Length

20

40

60

X
Y
Z

(b) bookshelf

Figure 19: Histogram for the bounding box size of the classes chair and bookshelf
from ScanNet. Histogram of chair is clipped at 1.5 meter.

and so most of the objects in the room are enclosed by tight boxes. The right room
is not aligned with the coordinate system, which drastically changes the enclosing
box size. We describe this in detail in Chapter 4.1.1. The third case considers the
variance that is introduced by the bounding box design. This is not related to the bar
chart. The fact that all objects occur rotated with respect to the global coordinate
system implies, that we need to consider cube like boxes for otherwise narrow objects.

From Figure 18 and the per class histograms, of which two are exemplarily displayed
in Figure 19, we define tailored anchor boxes. Figure 21 shows the tailored anchors.
The two boxes in the upper left account for different appearances of objects, like
chairs with and without legs. The two boxes below cover tall and small objects. The
four boxes in the upper right reflect the general tendency towards cube like boxes.

We compare the overall performance of the RPN for standard anchors and tailored
anchors in Table 2. We do this by reporting four measures. The Baseline IoU measure
is independent of the RPN. It shows the IoU for all positive anchors with the ground
truth boxes. The Objectness Prediction of the RPN selects anchor boxes and their
locations. Ideally this would reproduce the positive anchor selection. Therefore, we
can compare the IoU value that the objectness prediction achieves to the Baseline
IoU, which is an upper bound. For the Refinement IoU we apply the refinements,
which are predicted by the RPN, to the positive anchors, which are also used for the
Baseline IoU. If the RPN predicted zero refinements, the Refinement IoU shown in
this evaluation would be equal to the Baseline IoU. For this reason we use the Baseline
IoU as lower bound for comparing against the refinement. RPN IoU combines the

35

(a) aligned (b) rotated

Figure 20: Room from ScanNet with bounding boxes and instance labels. (a) The
room is aligned with the axes of the coordinate system. (b) The same
room, but rotated. The bounding box shape and the object shape are
not similar any longer in (b). Note how the orientation of the room in
the coordinate system changes the box layout.

objectness and refinement predictions. We apply the refinement values only to the
anchor boxes that are predicted by the RPN and compute the IoU between the refined
anchors and the ground truth boxes.

Baseline IoU Objectness IoU Refinement IoU RPN IoU

tailored anchors 44.0 22.3 45.1 23.9
general anchors 41.0 21.8 43.8 24.6

Table 2: RPN performance comparison for general and tailored anchors based on box
- IoU values in percent and averaged over all classes. 5 anchors per position
are used. Note that it is not a weighted average, all classes contribute
equally.

Taking the baseline as upper bound, the objectness prediction reaches 22.3
44.0 ∗ 100 =

50.7% and 21.8
41.0 ∗ 100 = 53.2%. When we compare the refinement to the baseline as

lower bound, we get a relative improvement of 45.1− 44.0 = 1.1% for tailored anchors
and 43.8− 41.0 = 2.8% for the general anchors respectively.
So the RPN performs better on the standard anchor set if we look at the relative

improvements. The RPN on the standard anchor set also has a better overall
performance, as we can see in the last column in Table 2. We can see this effect, that
the tailored anchors achieve higher Baseline, Objectness and Refinement IoUs, in
more detail in the per class evaluation in Table 3.

36

chair 1

0.586m

0.858m

0.633m

chair 2

0.586m

0.5m
0.633m

box

1.0m

1.0m

1.0m

couch + desk

1.7m

0.9m
1.7m

door

0.6m

1.75m

0.6m

sink

0.5m
0.25m

0.5m

bed

2.0m

1.2m
2.0m

table

1.25m

0.6m
1.25m

counter

1.9m
0.25m 1.8m

Figure 21: Tailored Anchors for the ScanNet dataset, based on the mean shape of
the bounding boxes. The mean shape is integrated over all instances of
an object class, including rotations.

bed bookshelf cabinet chair couch counter curtain desk door sink table toilet window

S: RPN Prediction 25.8 17.7 22.6 36.4 34.4 10.4 20.3 30.7 18.9 20.7 25.7 39.0 17.2
T: RPN Prediction 35.4 16.1 21.1 35.0 33.6 8.4 15.8 27.0 16.6 21.1 23.3 40.1 16.9

S: Refinement 47.3 43.6 40.0 51.2 54.9 23.3 42.2 47.8 38.6 38.7 45.5 52.8 42.9
T: Refinement 55.4 44.2 40.7 53.8 53.5 23.1 39.3 39.9 51.5 41.2 48.9 56.6 38.4

S: Baseline 39.3 42.4 41.2 46.2 55.9 18.4 42.0 48.5 35.6 35.4 41.8 41.8 45.1
T: Baseline 51.2 44.0 39.6 53.0 56.1 20.4 38.6 49.9 38.6 41.2 45.8 55.9 38.2

S: Objectness 20.7 17.4 22.0 30.3 31.8 10.0 20.4 29.3 15.8 17.6 23.1 27.3 17.5
T: Objectness 28.6 14.9 20.1 32.6 33.1 9.0 14.5 25.8 15.7 20.3 21.7 37.5 15.9

Table 3: Standard Anchors (S) - Tailored Anchors (T) comparison per class.

Furthermore, this experiment shows that the definition of anchor shapes is not a
crucial step for the performance of our RPN. Tailoring the anchors can increase their
overlap with the ground truth boxes, however it does not increase the performance of
the RPN compared to a standard set of anchors.

Figure 22 shows predicted boxes from an RPN that was trained with five specialized
ScanNet anchors. The reference point represents the center of the anchor box.

5.3.2 Anchor Reference Points

Besides the anchor design, the relative positioning of the anchor box is another key
factor for covering points that belong to an object. As described in Chapter 4, we
position the anchor boxes relative to points of the point cloud. In this experiment we
evaluate the IoU between the ground truth box and the anchor box for three different

37

Figure 22: Blue: predicted boxes from the RPN, Red: ground truth boxes. It is
part of the method to have multiple predictions per object, these can be
removed by non maximum suppression (NMS). False positive boxes (see
bottom wall) and false negatives (no blue box has an overlap with the
big red box in the top center) are bad, since the object detector cannot
recover from these wrong predictions.

relative positionings. The box positioning relative to a point is shown in Figure 11.
We compute three histograms, which are shown in Figure 23, one for each relative

positioning. We evaluate the quality of the positioning based on the IoU of the
anchors with the ground truth boxes. Therefore, we accumulate IoU values to bins of
width 0.1.

Lower left (a) and upper right (c) reference points produce lower IoU values than
the center (b) reference point. Anchors from (a) and (c) do not create IoU values
≥ 0.9. In addition, the sum of anchors with an IoU value higher than 0.5, is the
largest one of the three evaluations.
It is the goal of the region proposal network to create many proposals and avoid

false negatives. This means that, if the RPN does not predict an object location, our
method will not be able to identify the object that the RPN missed. Because we get
more anchor boxes with a good overlap for the center reference point, it is used in
further experiments.

In this experiment we did not check the reference points per class. It could be that
for some objects it is best to use the reference point as lower left in order to get a
higher initial IoU. Using a specific reference point per object class could increase the
number of anchors with a high IoU value further.
We use anchors for the supervision of the RPN by classifying them into positive

38

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
IoU

2e+07

2e+06
6e+05

2e+05
6e+04

2e+04

4e+03

7e+02

8e+01

0e+00

(a) lower left

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
IoU

2e+07
4e+06

1e+06
3e+05

8e+04
2e+04

5e+03

8e+02

6e+01

4e+00

(b) center

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
IoU

2e+07

2e+06
5e+05

1e+05
4e+04

1e+04

2e+03

2e+02

2e+01

0e+00

(c) upper right

Figure 23: Histograms for three different anchor reference points, where the point
corresponds to the (a) lower left corner, (b) the center, (c) the upper
right corner of the anchor box. Evaluated for nine anchors per position.
The number of occurrences is in logarithmic scale.

and negative anchors. In object detection for images Ren et al. [12] set the threshold
for negative anchors to 0.3 and the threshold for positive anchors to 0.7. Images are
projections onto a 2D plane. Without the depth channel, objects are a lot closer to
each other in the image. Anchors therefore tend to overlap with several ground truth
boxes. Since we operate on sparse 3D point clouds, we can lower the thresholds to
0.1 for negative anchors and 0.5 for positive anchors. Especially the lower threshold
for positive anchors is important as the RPN would otherwise create too many false
negatives.

5.3.3 Number of Anchors

As described in Subsection 4.1.1 Anchor Definition, our region proposal network can
work with one and more anchors per position. If the refinement prediction was strong
enough, only one anchor could be used for predicting objects in the point cloud. Since
we have seen in the previous experiments that the refinement is not strong enough
to do so, we inspect the RPN performance for three different anchor settings. We

39

test 1, 5 and 9 anchors per location. With 9 anchors we expect to get better IoU
values, as we can cover wide, tall, small and thin objects better from the start. For
the following evaluations we use ScanNet tailored anchors as defined in Figure 21.
Chairs are the most frequent objects in this data set. We use the anchor box (top
left) that is tailored to chairs in all three settings. For the 5 anchor setting, we use
the top row together with the left anchor of the second row. The 9 anchor setting
uses all displayed boxes. We compare the overall IoU values, the number of positive-
and the number of negative anchors for the three settings in Figure 24.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
IoU

2e+06

3e+05
1e+05

4e+04
1e+04

3e+03
1e+03

3e+02

3e+01

3e+00

(a) 1 anchor

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
IoU

9e+06
2e+06

8e+05
2e+05

6e+04
1e+04

4e+03

7e+02

6e+01

4e+00

(b) 5 anchors

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
IoU

2e+07
4e+06

1e+06
3e+05

8e+04
2e+04

5e+03

8e+02

6e+01

4e+00

(c) 9 anchors

Figure 24: We evaluate three settings of anchor(s) per position: (a) 1 anchor , (b)
5 anchors and (c) 9 anchors, based on the IoU value with the ground
truth boxes. The number of occurrences is in logarithmic scale. The
number of good IoU values (≥ 0.5) increases as we use more anchors per
position, but not with the same rate as the total number of anchors.

One anchor achieves an IoU between 0.9 and 1.0 3 times. Increasing the number of
anchors per location by a factor of 5 and 9 does not improve this very good overlap
by the same factor. Instead it only slightly increases by one occurrences over the full
dataset.

Most of the additional anchors from the settings (b) and (c) in Figure 24 have low
IoU values. The negative anchors (IoU ≤ 0.1) increase by almost the same factor, 4.5
for 5 anchors and 10 for 9 anchors, as the overall anchors. Nonetheless the quantity of

40

positive anchors (IoU ≥ 0.5) also increases, which is beneficial for the RPN training.
In order to derive the relevance of multiple anchors for the RPN, we compare the

validation measures of the RPN for the three settings in Table 4. As we can also see

Baseline IoU Objectness IoU Refinement IoU RPN IoU

1 anchor 27.8 19.1 25.0 20.1
5 anchors 44.0 22.3 45.1 23.9
9 anchors 48.0 20.2 48.1 22.5

Table 4: Comparison of the RPN performance for 1, 5 and 9 initial anchors per
location. 5 anchors lead to the best RPN performance of 23.9%.

from the histograms, the more anchors we use per location, the more positive anchors
we get and the higher is the baseline IoU. One disadvantage thereof is, that we need
a lot more anchors overall for it. Thus the network has to predict more refinements.
Overall the RPN performs best for five anchors per location out of the three settings
that we test. We use this setting for all evaluations of our object detector.

5.3.4 ROI Evaluation

In order to test the quality of the ROIs that the RPN predicts, we evaluate them
on the ScanNet instance segmentation benchmark. We use the trained RPN from
Subsection 5.5.1 with all inputs (DHNC) and assign the predictions the class label
of the ground truth box that it overlaps with most. Note, that we do not use the
ground truth so select a subset of the proposals. If the proposal and the ground truth
do not overlap, one of the ground truth class labels is assigned at random. During
evaluation, these proposals count as false positives, because they do not overlap with
the ground truth, their class label is not relevant. The ROI boxes are converted into
segmentation masks as described in Section 5.2.

Figure 25 shows three AP values per class. The ROIs capture chairs the best and
counters the worst. The AP scores of the classes are similar, the RPN is able to
detect objects of all classes and does not overfit to a particular class or subset of
classes.

mAP mAP 50% mAP 25%

0.005 0.023 0.262

Table 5: Mean AP values for region proposals with ground truth class label evaluated
on the ScanNet instance segmentation task.

41

ca
bi

ne
t

be
d

ch
ai

r
so

fa
ta

bl
e

do
or

win
do

w

bo
ok

sh
el

f

pi
ctu

re

co
un

te
r

de
sk

cu
rta

in

re
fri

ge
ra

to
r

sh
ow

er
 cu

rta
in

to
ile

t
sin

k

ba
th

tu
b

ot
he

rfu
rn

itu
re

0

0.2

0.4

0.6

0.8

AP

AP 50%

AP 25%

Figure 25: RPN proposal evaluation on the ScanNet instance segmentation bench-
mark. The AP scores across all classes are similar. The RPN predicts
ROIs that capture all classes. The objectness prediction is not dominated
by a subset of classes.

Table 5 shows the mean AP values for the evaluation. The mAP 25% score is
significantly better than the more restrictive mAP evaluation scores. We believe that
the position and size of the ROI is not accurate enough to achieve good precision
scores for IoUs bigger than 25%.
In total, the validation set contains 4,000 ground truth masks for 304 scenes. In

this experiment, the RPN predicts 50,000 masks for the same set. On average, these
are 150 masks too many per room. Each predicted mask that does not match a
ground truth is considered a FP. Furthermore only one predicted mask that overlaps
with a ground truth box counts as TP, all other predictions that target the same
ground truth box count as FP. False positives have a negative impact in the AP
computation. To conclude, the RPN predicts too many ROIs per scene.

42

5.4 Classifier

(a) ShapeNet (b) S3DIS

Figure 26: A table from (a) ShapeNet and (b) S3DIS. In contrast to the table from
ShapeNet, the table from S3DIS is incomplete. Points from the front
left leg and the back legs are missing.

5.4.1 Performance Evaluation

We want to analyze the power of our classifier that uses tangent convolutions as local
processing units. The classifier architecture used for these experiments is the same as
in Figure 15. In order to test the performance, we train and evaluate the classifier on
three different data sets: (1) ShapeNet as described in Section 5.1, (2) objects from
S3DIS and (3) RPN region proposals on S3DIS. We refer to (2) as S3DIS-GT and
to (3) as S3DIS-RPN. The difference between ShapeNet and S3DIS-GT is displayed

TC Classifier on ShapeNet: 81.9% oA

bench cabinet chair display sofa table

bench 110 0 3 2 15 13
cabinet 14 141 0 8 6 11
chair 4 0 204 0 8 8
display 9 10 2 99 2 5
sofa 26 2 10 0 176 3
table 22 4 1 3 9 173

Recall 0.595 0.898 0.927 0.884 0.815 0.812
Precision 0.769 0.783 0.911 0.78 0.811 0.816
Accuracy 0.902 0.95 0.967 0.963 0.927 0.928

Table 6: Confusion matrix together with the per class recall, precision and accuracy
for the classifier on the ShapeNet validation set.

in Figure 26. Whereas artificial objects from ShapeNet are complete, objects from

43

S3DIS can have missing parts, due to a blocked view of the sensor. For S3DIS-GT,
we use the instance labels to create a point cloud for each individual object and
classify it. S3DIS-RPN is constructed as follows. In the object detection pipeline,
the classifier operates on proposal point clouds that are predicted by the RPN. These
regions can be smaller, bigger or shifted compared to the ground truth objects. We
extract regions with a RPN setting that uses five standard anchor boxes per location.
We use at maximum 66 regions with a minimum IoU of 0.1 with the ground truth box.
These settings are also used for the classifier training and ensure that the classifier
is trained on good proposals. The question is if we can see performance drops for
real world data and for region proposals as the quality of the objects drops. Table 6

TC Classifier on S3DIS: 89.0% oA

window door table chair sofa bookcase board

window 35 0 0 0 0 4 5
door 5 127 1 1 0 8 0
table 0 0 147 2 1 19 0
chair 0 0 3 238 4 1 0
sofa 0 0 0 1 6 0 0
bookcase 8 0 3 16 0 183 3
board 4 0 0 0 0 2 34

Recall 0.673 1 0.955 0.922 0.545 0.843 0.81
Precision 0.795 0.894 0.87 0.967 0.857 0.859 0.85
Accuracy 0.97 0.983 0.966 0.967 0.993 0.926 0.984

Table 7: Confusion matrix together with the per class recall, precision and accuracy
for the classifier on S3DIS-GT. The oA is better than for the complete,
artificial objects.

shows the confusion matrix, together with the precision, accuracy and recall values
for the classes from ShapeNet. The overall accuracy of the classifier is 81.9%.

We compare Table 6 to Table 7 and see that the performance of the classifier is
higher for the real world data. This is in contrast to the expectation that real world
data would be more difficult to classify since only parts of the model are visible.
There are three possible explanations for this effect. The first one is that missing
object parts also contain useful information for classification. The second one is that
the models from ShapeNet vary greatly in shape and appearance, whereas models
from S3DIS mostly are of one type, like office chairs, living room chairs, lecture hall
chairs versus only office chairs. The third one is that the datasets differ in size and

44

Classifier comparison. S3DIS-GT: 89.0% oA - S3DIS-RPN: 78.9% oA

window door table chair sofa bookcase board

Recall 0.673 1 0.955 0.922 0.545 0.843 0.81
S3DIS-GT Precision 0.795 0.894 0.87 0.967 0.857 0.859 0.85

Accuracy 0.97 0.983 0.966 0.967 0.993 0.926 0.984

Recall 0.385 0.470 0.718 0.921 0.078 0.791 0.130
S3DIS-RPN Precision 0.761 0.519 0.693 0.838 0.25 0.818 0.750

Accuracy 0.978 0.963 0.895 0.884 0.970 0.896 0.993

Table 8: Classifier performance comparison for the two datasets S3DIS-GT and
S3DIS-RPN.

number of objects per class. This experiment shows, that real world data does not
harm the predictive power of our classifier network. In Table 6 we can see that the

Classifier mean comparison on S3DIS-GT and S3DIS-RPN

mAcc mPrec mRec oA

S3DIS-GT 0.970 0.870 0.821 0.894
S3DIS-RPN 0.940 0.661 0.499 0.789

Table 9: Classifier comparison between S3DIS-GT and S3DIS-RPN for the mean
evaluation measures. The classifier achieves higher scores on the S3DIS-GT
dataset. We believe that the performance drop is caused by less accurate
ROIs.

tangent convolution classifier confuses around 10% of benches with chairs. Figure 26
(a) shows a table from ShapeNet, but from the appearance it could also be a bench
without back rest. Similar confusions happen for the S3DIS data. Table 7 shows
that boards and windows are very likely to be confused. Both are planar and nearly
indistinguishable from walls. These confusions show that the classifier can actually
reason about the appearance of the object and learns something about their structure.

Table 7 shows the confusion matrix, together with the recall values for the classes
from S3DIS. We compare this in Table 8 with the classifier performance on the RPN
data. The performance of the classifier on the RPN objects drops significantly for
the classes board, window, sofa and door. This can be caused by the class imbalance
in the data or due to the region proposal boxes that can include more points from
the surrounding scene, like in Figure 27.

45

From Table 9 we conclude that the classifier is strong enough to learn the structure
of objects and that it is able to classify them. However, on crops from the 3D point
cloud the classifier performance drops. We believe that this is due to inaccurate
boxes, which contain additional points of the surrounding scene or only parts of the
object.

Figure 27: Proposed region for a table (cyan). The main direction of the table is
not aligned with the coordinate system. Therefore the table cannot be
extracted without the chair (green).

5.4.2 Tangent- vs 3D Convolutions

In the experiment in Subsection 5.4.1 we evaluated the tangent convolutions classifier
(TC) performance on different data sets and show that it is able to distinguish
between objects. In order to reason about the strength of tangent convolutions for
the classification task, we compare them against 3D grid convolutions. Therefore, we
implement a baseline classifier network (BL) that uses 3D grid convolutions. The
architecture of the baseline network has the same number of convolution and pooling
operations. Furthermore, we ensure pooling from the same volume size and that
both networks operate on the same resolution of the point cloud. Hence no network
can outperform the other due to a bigger receptive field. However, the input for the
networks is different. Tangent convolutions operate on depth to the tangent image,
whereas 3D grid convolutions operate on an 24 x 24 x 24 occupancy grid, with 7cm
large voxels. Given the grid layout, we convert the point cloud into a voxel grid by
assigning an occupied label to all voxels that contain a point, all remaining voxels are
marked as free.

In Table 11 and Table 10 we compare the power of 3D grid convolutions to tangent
convolutions. The results from the grid convolutions are 2% better than for the

46

Classifier mean comparison for BL and TC

mAcc mPrec mRec oA

BL 0.974 0.836 0.838 0.909
TC 0.970 0.870 0.821 0.894

Table 10: Classifier comparison between BL and TC on the mean evaluation mea-
sures. The performance difference between the two classifiers is small.
The baseline method performs better.

tangent convolutions for the overall accuracy. Tangent convolutions achieve better
recall values for doors and boards.

method window door table chair sofa bookcase board

baseline Recall 0.692 0.984 0.968 0.938 0.636 0.885 0.762
TC Recall 0.673 1 0.955 0.922 0.545 0.843 0.81

baseline Precision 0.735 0.947 0.949 0.968 0.583 0.869 0.800
TC Precision 0.795 0.894 0.87 0.967 0.857 0.859 0.85

baseline Accuracy 0.966 0.99 0.985 0.972 0.99 0.937 0.979
TC Accuracy 0.97 0.983 0.966 0.967 0.993 0.926 0.984

Table 11: Comparison BL - TC on S3DIS. The performance of the two networks
is similar. The baseline network achieves higher values across the three
evaluation measures.

TCs operate directly on points and can pick up dense areas. This is more detailed
than the grid information that 3D convolutions operate on. One possible explanation
for the small improvement of 3D convolutions is that they overfit less than TC during
training and therefore generalizes better for the validation set. This also explains
why tangent convolutions perform better on the classes that show little structure,
like board and door.
All in all we can summarize in this experiment that the tangent convolutions

classifier performs well on the S3DIS-GT dataset, but not better than the baseline
method with 3D convolutions. The performance of both classifier networks is very
similar. Therefore both can be used for the object detection task.

47

5.5 ScanNet Benchmark Evaluation

ScanNet makes 1513 fully annotated 3D scans publicly available. Another 100 scans
are provided without ground truth data for instance segmentation. Predictions for
these 100 scans can be submitted to their benchmark website1. Public submissions
are ranked in a leader board by the mean average precision (mAP) for three overlap
values on points, see Section 5.2. Additionally the average precision per class is
provided. The classes floor and wall are excluded for instance tasks. We test the
performance of our 3D object detector on the 3D Semantic instance benchmark.
Furthermore the evaluation script is available on github, so that we can also evaluate
on the validation set2.

5.5.1 Input Signal Configurations

ca
bin

et be
d

ch
air

so
fa

ta
ble do

or

wind
ow

bo
ok

sh
elf

pic
tu

re

co
un

te
r

de
sk

cu
rta

in

re
fri

ge
ra

to
r

sh
ow

er
 c

ur
ta

in
to

ile
t

sin
k

ba
th

tu
b

ot
he

rfu
rn

itu
re

0

0.2

0.4

0.6

0.8

ap

ap50

ap25

Figure 28: ScanNet validation for depth as input channel. The plot shows the
detection scores for AP, AP at 50% IoU and AP at 25% IoU. The object
detector performs better for the classes bed, chair, and sofa than for the
classes picture, counter, shower curtain, and toilet. The latter are not
detected at all.

Before submitting to the leader board of the benchmark, we compare the per-
formance of our 3D object detector for two input and parameter settings on the
validation set. For the first setting, we use depth as the only input for the network.
Depth in the tangent convolutions case means depth to the tangent image plane as
described in more detail in Section 3.2. For the second setting, we use depth, height,

1http://kaldir.vc.in.tum.de/scannet_benchmark/semantic_instance_3d
2https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/

48

http://kaldir.vc.in.tum.de/scannet_benchmark/semantic_instance_3d
https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/

normals and color information as input. Additionally, we lower the tolerated overlap
of boxes in the non maximum suppression (NMS) post processing from 20% to 5%.
The NMS lowers the number of object predictions per location, which reduces the
penalty in the average precision evaluation metric for false positives.
In Figure 28 we see the average precision (AP) values itemized per class and per

overlap value. The higher the overlap value, the more restrictive it is. It represents
the IoU on points threshold, for which the detections are considered to be a true
positive. We achieve the highest scores for the classes bed, chair, sofa and bathtub.
In general the AP drops drastically for more restrictive IoU values. Shower curtain
and toilet are not predicted. We believe that this is due to a class imbalance in the
classifier training data. The box size of toilets is very similar to chairs and shower
curtains are similar to curtains. Following the imbalance, the classifier did not learn
to distinguish between chairs and toilets and predicts always chairs in this case. Our
ablation study in Subsection 5.3.4 shows that the RPN captures all objects and
achieves similar average precision scores. The object detector in this experiment
misses shower curtains. This indicates that the object detector predictions are a
result of imbalanced classifier predictions. Figure 29 shows the evaluation of the

ca
bin

et be
d

ch
air

so
fa

ta
ble do

or

wind
ow

bo
ok

sh
elf

pic
tu

re

co
un

te
r

de
sk

cu
rta

in

re
fri

ge
ra

to
r

sh
ow

er
 c

ur
ta

in
to

ile
t

sin
k

ba
th

tu
b

ot
he

rfu
rn

itu
re

0

0.2

0.4

0.6

0.8

ap

ap50

ap25

Figure 29: ScanNet validation for depth, height, normals and color as input channels.
The plot shows the detection scores for AP, AP at 50% IoU and AP
at 25% IoU. Overall this detector achieves higher detection scores than
the one that uses only depth. The detection score for toilets increased
drastically.

second setting on the validation set. The prediction is still strong for the classes bed,
chair, sofa and bathtub. In contrast to Figure 28, curtain predictions decrease and
toilet predictions increase drastically. Our explanation for this effect is that with

49

color input the mostly white toilets are now better distinguishable from black chairs.
From the evaluation values in Table 12 we can see that on average the performance

D DHNC

mean AP 25% 0.198 0.230
mean AP 50% 0.053 0.083
mean AP 0.013 0.027

Table 12: Object Detector Performance Comparison for the two different input signal
settings. We compare the performance for only depth (D) against depth,
height, normal, color (DHNC) based on the Mean Average Precision score.
More input signals improve the performance of the object detector by a
factor of two for mAP.

of the object detector improved for more input channels and a stronger NMS setting.
Conclusion: as expected the network with more inputs performs better. In some

cases, the color input per point helps identifying objects, like toilets and pictures. In
Figure 30 the detection in image (b) improves noticeably compared to the two small
detection boxes in image (a).

(a) D (b) DHNC

Figure 30: (a) Detection using depth only. (b) Detection using all inputs. The
picture is localized better in (b).

5.5.2 Submission to Leader Board

We submit our method with the settings from subsection 5.5.1 to the ScanNet
Benchmark and compare it to three other methods in Figure 31. Mask-RCNN
Projection is the baseline method that we mainly compare against. This method
runs Mask RCNN [13] on images and projects the instance labels onto the 3D point
cloud. The other methods, Similarity Matrix based segmentation (SGPN) and Multi-
Task Metric Learning (MTML), are anonymous submissions. Whereas SGPN and

50

ba
th

tu
b

be
d

bo
ok

sh
elf

ca
bin

et
ch

air

co
un

te
r

cu
rta

in
de

sk
do

or

ot
he

rfu
rn

itu
re

pic
tu

re

re
fri

ge
ra

to
r

sh
ow

er
 c

ur
ta

in
sin

k
so

fa
ta

ble
to

ile
t

wind
ow

0

0.2

0.4

0.6

0.8 Ours

MTML

SGPN ScanNet

MaskRCNN Projected

Figure 31: Submission to the leader board of ScanNet. This plot shows the results
for AP with 50% point overlap. Our method uses only 3D information.

MaskRCNN make use of RGB images, MTML and our method use only the 3D
point cloud. Table 13 shows that we are better than the baseline method and can
almost double the mAP values for high overlaps. SGPN performs less than 1% better
than our method does for the mean AP. The performance difference increases to
around 4% for mean AP 50%. MTML is the strongest method in this evaluation and
performs around two times better than our method for mean AP and mean AP 50%.
In Figure 31 SGPN ScanNet has the most balanced predictions. It does not achieve
the highest overall values, but performs good for all classes. Our method performs
best for the classes bookshelf, bathtub and desk, and is competitive for cabinet, chair,
door, other furniture, sofa and window. So for these classes the performance difference
between MTML and our method is not that big. Unfortunately our method misses
the classes counter, curtain, picture, refrigerator and shower curtain completely, which
restricts our overall performance. Note that our method is an object detector and

Ours SGPN ScanNet MTML MaskRCNN Projected

mean AP 25% 0.203 0.317 0.243 0.227
mean AP 50% 0.094 0.133 0.180 0.053
mean AP 0.043 0.047 0.086 0.021

Table 13: We compare our method to the methods on the ScanNet leader board
based on the mean AP scores. For mAP 50% and mAP we achieve higher
scores than the Mask R-CNN Projected method.

assigns an instance label to all points within the predicted box. In cases where a

51

box is the wrong tool to contain points of an instance, see Figure 27, we introduce
a rather large error. With a binary mask prediction per box and a more balanced
prediction for all classes, our method will become even more competitive.

5.5.3 Qualitative Results for ScanNet

In Figure 32 we show one qualitative example per row. The left image shows the
ground truth, the image in the middle shows the result of our method for depth
to the tangent plane (D) as input and the image on the right shows the result for
multiple input channels. These are depth, height, normals and color (DHNC). The
first four rows show successful detections for either D or DHNC. It is also visible in
these pictures that our method confuses some objects, like two chairs next to each
other as couch (first row DHNC), and table and desk (third row, DHNC) In many
cases DHNC performs better than D, as can be seen in row four, where we get a good
detection for a door. Also note that the ground truth labelling is not always complete.
The door in the fourth row is only partially labelled. The fifth row shows a case where
our method confuses a toilet with a chair. Row six and seven are examples where our
method does not perform well and where more input seems to be harmful. This is
the case for the bathroom in row six, where we get many false positive predictions at
the bottom wall. Row seven shows a difficult room with many objects. These range
from 2 meter wide sofas to small, 40 centimeter high pictures. Furthermore we see in
this example that sofas (brown) are correctly detected for D, but not for DHNC.

52

53

(GT) (D) (DHNC)

• Cabinet • Bed • Chair • Sofa • Table • Door • Window • Bookshelf • Picture • Counter
• Desk • Curtain • Fridge • Shower curtain • Toilet • Sink • Bathtub • Other furniture

Figure 32: Qualitative results for ScanNet: The images on the left show the ground
truth (GT). The center images show the predictions of the object detector
that uses depth (D) as input, and the images on the right show the
results for (DHNC) depth, height, normal, color inputs.

54

5.6 Evaluation for S3DIS

In this experiment we train and evaluate our object detector on the S3DIS data set,
without any parameter adjustments. We evaluate on the same measures that are
used in the ScanNet benchmark.

window door table chair sofa bookcase board mean

AP 25% 0.187 0.039 0.241 0.678 0.008 0.211 0.001 0.195
AP 50% 0.102 0.011 0.025 0.325 0.000 0.046 0.000 0.073
AP 0.025 0.002 0.006 0.113 0.000 0.015 0.000 0.023

Table 14: Object detector results on S3DIS. Our method can detect chairs the best
and boards the least.

Table 14 shows the results of the object detector per class, together with the mean
AP over all classes. Our method can detect chairs the best and boards the worst.

Figure 33 visualizes the results per class. In comparison to Figure 29 the perfor-
mance is similar for all classes except sofa. We achieve similar mean average precision
values on S3DIS and on ScanNet. This proves that our object detector does not
overfit to one data set. It can be used without parameter and anchor adjustments
across different data sets.

window door table chair sofa bookcase board
0

0.2

0.4

0.6

0.8

Ap

Ap 50

Ap 25

Figure 33: Stanford Validation DHNC.

In Figure 34 we show one qualitative example per row. The image on the left
shows the ground truth. The image on the right shows the predictions. In total we
present six qualitative examples, one in each row. As Figure 33 highlights, we get
the best detections for chairs. The right image in row one shows that our method
correctly identifies the three chairs in the front and four chairs in the back. In many
cases the detection box contains parts of neighboring surfaces, points that belong

55

to the wall but are labeled as chair illustrate this. Example two is an office scene
that contains many objects. The only object that our method misses is the bookshelf
below the board in the back right corner of the room. All other object types are
captured correctly, e.g., the door in the bottom left, the window and the chairs and
desks. The office rooms in S3DIS comprise large bookshelves. The standard anchor
boxes that we define in Figure 14 are not big- and the refinements are not strong
enough to cover such large objects as shown in row three. On this account our method
identifies several bookshelves instead of one at the back wall in row three. As we
found out in the ablation study in Subsection 5.3.4, the region proposal network
outputs many regions of interest. Row five and six show qualitative results of false
positive detections in the scene. For the bathroom in row five our method wrongly
detects the basin as table and bookshelves on the wall. In row six we falsely detect a
window on the left wall.

56

(GT) (P)

• Window • Door • Table • Chair • Sofa • Bookcase • Board

Figure 34: Qualitative results for S3DIS. The images on the left show the ground
truth. The images on the right show the prediction.

57

6 Conclusion and Future Work

6.1 Conclusion

We have presented a new convolutional neural network for object detection in 3D point
clouds. Our architecture is based on Faster R-CNN and uses crucial functionality to
deal with 3D point clouds, such as 3D anchor design and the tangent convolution
operation as the main building block. The latter, instead of 3D grid convolutions,
ensures efficient and accurate processing of the point cloud. In contrast to other
methods, which rely on additional 2D images of the 3D scene, our method uses only
3D information.

Our experiments on the ScanNet benchmark and Stanford dataset show that our
method is able to detect objects at various scales, sizes and positions large scenes. On
the ScanNet instance segmentation leader board we achieve a higher mean Average
Precision than the baseline method Mask R-CNN 3D Projections for IoU values
higher than 25%. The comparison on the leader board of the ScanNet benchmark also
shows that our method is competitive with other approaches operating in the same
mode. Our ablation studies show that the region proposal network is not sensitive to
the anchor design and that it detects all object types. They further show, that the
classifier network, which is trained on the RPN proposals, suffers from the uneven
number of objects per class.

6.2 Future Work

In the following we suggest extensions to our method that we believe will improve
the overall performance.
As we have shown in Figure 13, by the current design of the bounding boxes,

objects are not enclosed by tight boxes, depending on the rotation of the object
relative to the coordinate system. We believe that this limits the RPNs refinement
prediction strength, since the bounding box shape and the object are not strongly
related in this case. In order to make the objects box shape independent of the

59

relative orientation to the grid (tight bounding box at all rotations), we suggest
to extract this information from the point cloud and make the RPN predict the
orientation of the box in addition to the refinement values.
In order to evaluate our object detector on an instance segmentation benchmark,

we assign all points within the box an instance class label and do not distinguish
between fore- and background. Especially boxes of big objects like tables and sofas
overlap with other objects and thus the IoU over points decreases. We expect that
adding a binary segmentation branch to our network architecture, following the Mask
R-CNN rolemodel, improves our detection results on the ScanNet leader board.
Our object detection method uses the encoder part of the U-net proposed by

Tatarchenko et al. [4] for feature extraction in the RPN and the classifier network.
This is a rather small network with two pooling- and six convolution layers. In
comparison, feature extraction networks for images, like VGG [17] with 19- and
ResNet [18] with 34-convolutional layers are much deeper. He et al. [13] found that
deeper backbone networks improve the overall performance. We expect the same
effect for object detection in 3D.

Furthermore, Ren et al. [12] initialize their feature extraction networks with weights
that have been trained on ImageNet. We initialize our networks with random weights.
Using generic, pre-trained weights for 3D data is very likely to improve training and
generalization of our method.
Throughout this work we tested only a few parameter settings for our approach.

A structured search of better hyperparameters is one more option to improve the
performance of our method.

60

Bibliography

[1] G. Riegler, A. O. Ulusoy, and A. Geiger, “Octnet: Learning deep 3d representa-
tions at high resolutions,” CoRR, 2016.

[2] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in convo-
lutional neural networks on graphs,” in CVPR, 2017.

[3] S. Wang, S. Suo, W. Ma, A. Pokrovsky, and R. Urtasun, “Deep parametric
continuous convolutional neural networks,” in CVPR, 2018.

[4] M. Tatarchenko*, J. Park*, V. Koltun, and Q.-Y. Zhou., “Tangent convolutions
for dense prediction in 3D,” in CVPR, 2018.

[5] A. Dai, A. X. Chang, M. Savva, M. Halber, T. A. Funkhouser, and M. Nießner,
“Scannet: Richly-annotated 3d reconstructions of indoor scenes,” in CVPR, 2017.

[6] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. K. Brilakis, M. Fischer, and
S. Savarese, “3d semantic parsing of large-scale indoor spaces,” in CVPR, 2016.

[7] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in CVPR, 2005.

[8] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in CVPR, 2014.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in NIPS, 2012.

[10] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, “Selective search for
object recognition,” International Journal of Computer Vision, 2013.

[11] R. B. Girshick, “Fast R-CNN,” in ICCV, pp. 1440–1448, 2015.

[12] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time
object detection with region proposal networks,” in NIPS, 2015.

61

[13] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask r-cnn,” in ICCV, 2017.

[14] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy trade-offs
for modern convolutional object detectors,” in CVPR, 2017.

[15] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in CVPR, 2016.

[16] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg,
“SSD: single shot multibox detector,” in ECCV, 2016.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” CoRR, 2014.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in CVPR, 2016.

[19] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for
real-time object recognition,” in IROS, 2015.

[20] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets:
A deep representation for volumetric shapes,” in CVPR, 2015.

[21] P. Wang, Y. Liu, Y. Guo, C. Sun, and X. Tong, “O-CNN: octree-based convolu-
tional neural networks for 3d shape analysis,” CoRR, 2017.

[22] R. Klokov and V. S. Lempitsky, “Escape from cells: Deep kd-networks for the
recognition of 3d point cloud models,” CoRR, 2017.

[23] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point
sets for 3d classification and segmentation,” in CVPR, 2017.

[24] S. Gupta, P. A. Arbeláez, R. B. Girshick, and J. Malik, “Indoor scene under-
standing with RGB-D images: Bottom-up segmentation, object detection and
semantic segmentation,” International Journal of Computer Vision (IJCV), 2015.

[25] D. Lang, S. Friedmann, and D. Paulus, “Semantic 3d octree maps based on
conditional random fields,” in International Conference on Machine Vision
Applications (IAPR), 2013.

[26] S. Song and J. Xiao, “Deep Sliding Shapes for amodal 3D object detection in
RGB-D images,” in CVPR, 2016.

62

[27] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets for 3d
object detection from RGB-D data,” in CVPR, 2018.

[28] B. Yang, W. Luo, and R. Urtasun, “PIXOR: real-time 3d object detection from
point clouds,” in CVPR, 2018.

[29] W. Wang, R. Yu, Q. Huang, and U. Neumann, “SGPN: similarity group proposal
network for 3d point cloud instance segmentation,” in CVPR, 2018.

[30] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature
learning on point sets in a metric space,” in NIPS, 2017.

[31] V. Tananaev, “Semantic segmentation in point clouds with deep networks,”
Master’s thesis, Albert-Ludwigs-Universität Freiburg, 2017.

[32] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention - MICCAI, 2015.

[33] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, “Shapenet: An
information-rich 3d model repository,” CoRR, 2015.

63

	1 Introduction
	2 Related Work
	2.1 2D Object Detection
	2.2 3D Deep Learning
	2.3 3D Object Detection and Instance Segmentation

	3 Background
	3.1 Faster R-CNN
	3.1.1 Region Proposal Network
	3.1.2 Classifier
	3.1.3 Joint Training

	3.2 Tangent Convolutions for dense prediction in 3D

	4 Approach
	4.1 Region Proposal Network
	4.1.1 Anchor Definition
	4.1.2 Training

	4.2 Classifier
	4.2.1 Architecture
	4.2.2 Training

	4.3 ROI Alignment

	5 Experiments
	5.1 Datasets
	5.2 Evaluation metrics
	5.3 Region Proposal Network
	5.3.1 Anchor Appearance
	5.3.2 Anchor Reference Points
	5.3.3 Number of Anchors
	5.3.4 ROI Evaluation

	5.4 Classifier
	5.4.1 Performance Evaluation
	5.4.2 Tangent- vs 3D Convolutions

	5.5 ScanNet Benchmark Evaluation
	5.5.1 Input Signal Configurations
	5.5.2 Submission to Leader Board
	5.5.3 Qualitative Results for ScanNet

	5.6 Evaluation for S3DIS

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

