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Abstract

Diffusion gained an important role in image processing and computer vision problems.
Each mathematically well-founded diffusion model proved its advantages especially
in image smoothing. However, unlike the linear diffusion, nonlinear models require a
strong mathematical intuition to understand the process. A visual description would
yield a better interpretation within and in between various models. The diffusion
echo is a good way to visualise diffusion processes. However, it is computationally
expensive. The diffusion echo of a pixel in an image has the size of the image itself.
Additionally, in nonlinear settings, the diffusion echo is also different for each pixel.
Moreover, large stopping times are useful to analyse the image structures, which
increases the computational burden further.

To this end, this thesis exploits parallel programming on GPU with CUDA and Fast
Explicit Diffusion (FED) schemes to compute diffusion echoes in an efficient way.
With the implementation in this thesis, it is possible to compute 1024 segment-like
diffusion echoes of an image of size 256× 256 in 160 sec.

Furthermore, having thousands of segment-like diffusion echoes led us to analyse the
image structures in a compact way. PCA is used to find significant eigenechoes to
represent all diffusion echoes of an image. In our evaluation, the first 30 eigenechoes
of 4096 diffusion echoes resulting from edge-enhancing diffusion of a 256× 256 image
can represent all 65536 diffusion echoes of the image with the average MSE of 10.83.

Inspired by the scale-space representation, we introduce a diffusion echo-driven seg-
ment scale-space. Each segment-like echo can be used as a coarse segment and traced
back in time to improve localization.

Besides the wide range of possible future work, the work in this thesis can help
improving the existing diffusion models as well as designing new ones with more
intuitive and better understanding.
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Chapter 1

Introduction

Motivation. Diffusion processes become more and more involved in image process-
ing and computer vision. They are good examples of the physical concepts which are
used fruitfully in this field. They are used in a wide range of image processing and
computer vision tasks such as image compression, multi-scale representations and im-
age smoothing. Their power is two fold. First, they are mathematically well-founded
schemes offering a transparent continuous modeling of the diffusion phenomena [22].
This allows to design stable models for specific applications with a physical intuition.
The linear diffusion model can be used to obtain a Gaussian smoothing. The non-
linear isotropic diffusion model would be more suitable for a discontinuity preserving
smoothing. Also anisotropic diffusion models can be chosen in order to steer the
diffusion more according to the underlying local image structure. For example, the
edge-enhancing diffusion model would be better when the edges are the center of
attention. Similarly, the coherence-enhancing diffusion model would be more useful
when the coherence is the most desired structure. A very comprehensive analysis on
each model can be found in [22]. Secondly, they still favor the development of new
models as well as the reinterpretation of the classical models. Anisotropic diffusion
can be modified to create a new model called corner enhancing diffusion by introduc-
ing a corner-ness measure [6]. It is also possible to see Gaussian smoothing from a
different point of view by reformulating it into linear diffusion.

Despite their promising results and popularity, how they exactly behave on a single
pixel is still not easily interpretable. This is exactly the motivation for the work by
Dam and Nielsen [6]. Their starting point is the existence of a Green’s function for
the Partial Differential Equation (PDE) of the linear diffusion as a Gaussian [9, pp.
43-56]. The Green’s function tells exactly how the convolution filter looks like. This
means that the convolution of the image with the corresponding Green’s function is
equivalent to iterating the process defined by the PDE. Although nonlinear diffusion
models yield more desirable results, they lack of such an intuitive and visual descrip-
tion. Because their dependence on the local structure around each pixel turns into
a disadvantage: the diffusion filter changes from pixel to pixel and has the size of
the original image itself. While the research on a closed form solution for the PDEs

1



(a) (b) (c)

(d) (e) (f)

Figure 1.1: Diffusion echoes (b)-(f) of different pixels of 256 × 256 head image (a)
for isotropic nonlinear diffusion with Perona-Malik diffusivity with σ = 0.5, λ = 1,
number of FED cycles=10, and diffusion time T=2000.

of nonlinear diffusion models is still ongoing, Dam and Nielsen [6] offered an explicit
computation of the impulse response of a nonlinear diffusion process which they call
the diffusion echo. Figure 1.1 shows various diffusion echoes of different pixels re-
sulting from the isotropic nonlinear diffusion with the Perona-Malik diffusivity. Each
diffusion echo belongs to the pixel marked with a red dot. It can be observed that each
pixel spreads differently depending on the local structure and the diffusion process.

Related work and contribution. According to our knowledge, Dam and Nielsen’s
work [6] is the only work on the concept of the diffusion echo until quite recently. The
diffusion echoes they propose are very preliminary. They are limited to several pixels
and early stopping times due to the computational expenses in those times. Therefore,
they lack of further analysis on large stopping times and better representation of all
diffusion echoes. A very recent and related work on the diffusion echo is Jennewein’s
master’s thesis [11]. It focuses on theoretical properties of the diffusion echo without
advanced numeric and representative concerns. This is exactly the scope of this thesis.
In the first part, my work addresses the efficient computation of the diffusion echoes
of the sampled pixels of an image. In recent years, the General-Purpose Computing
on Graphics Processing Unit (GPGPU) offers tremendous speed ups for parallelizable
tasks. The idea is to exploit the parallel architecture of the Graphics Processing Unit

2



(GPU) in order to compute thousands of independent computations simultaneously.
The Compute Unified Device Architecture (CUDA) introduced by NVIDIA provides
a high-level platform for the GPU programming. Also the Fast Explicit Diffusion
(FED) scheme [8] [7] is used to speed up diffusion processes along with the parallel
computations. In the second part, my work focuses on the compact representations
of the diffusion echoes by the important image structures. A well-known machine
learning algorithm, the Principal Component Analysis (PCA), is used to find the
representative eigenechoes. Therefore, storing only few eigenechoes will be enough to
represent and reconstruct all the diffusion echoes. Another very recent work, which
is close in spirit, is [21] by Milanfar and Talebi. They compute the filter entries
only for the sampled points in an image. The Nystroem extension helps them to
approximate the eigenvectors and the eigenvalues of the whole filter by these sampled
filters. Then they shrink the eigenvalues to denoise the image. Their work is very
close to ours except the method they use to approximate eigenvectors and the filtering
methods they focus on. They improve patch-based denoising methods such as Non-
Local Means (NLM) and Block Matching and 3-D (BM3D) filtering. In order to
compare both methods, we adapted their eigenvector approximation to the diffusion
echoes.

Organisation. The rest of the thesis is organized as follows. In Chapter 2, we will
establish a necessary background knowledge for the thesis by introducing the diffusion
models, their discretizations, the fast explicit diffusion scheme, the scale-space concept
and the mean squared error. In Chapter 3, we will introduce the diffusion echo in
detail and analyse the diffusion echoes of various diffusion models. In Chapter 4,
we will present GPGPU and CUDA briefly. Then we will explain how to compute
diffusion echoes efficiently with parallel algorithms. We will provide experiments
with different diffusion models and parameters with corresponding computational
times. The chapter will conclude with a brief discussion. In Chapter 5, we will
introduce the PCA. Afterwards, we will evaluate the potential of the eigenechoes to
represent the individual image segments. Following the PCA, we will discuss how to
adapt Nystroem approximation to our framework. We will provide with experiments
including both methods with different parameters, diffusion models and images. The
chapter will end with a brief discussion. In Chapter 6, we will propose a diffusion
echo-driven segment scale-space. In Chapter 7, we will conclude the work in the thesis
and discuss possible future work.

3



Chapter 2

Preliminaries

In this chapter, we will explain various diffusion models, their discretizations and
how to speed them up using the Fast Explicit Diffusion (FED) scheme already in the
sequential programmes. Afterwards, we will explain the scale-space concept and the
Mean Squared Error (MSE) which we use as the error measure.

2.1 Diffusion Models

Diffusion process is a physical concept that tries to equilibrate concentration differ-
ences in a system by conserving the overall mass in it. The concentration differences
create a flux j which tries to equilibrate these differences [22]. Fick’s law states this
equilibrium as

j = −D · ∇u, (2.1)

where D is the diffusion tensor which is a symmetric positive definite matrix and the
concentration gradient is defined as ∇u := (∂xu, ∂yu)T in 2-D.

The preservation of mass in a diffusion process can be expressed as

∂tu = −div(j), (2.2)

where t denotes time and the divergence operator is defined for a 2-D vector v =
(v1, v2)

T as div(v) := (∂xv1 + ∂yv2).

Combining these 2 equations, one obtains the diffusion equation, also known as heat
equation, as

∂tu = div(D · ∇u). (2.3)

When this concentration differences are associated with the gradients of grey values
in an image, the diffusion process can be interpreted as image smoothing and detail
removing [22].
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2.1.1 Linear Diffusion

Linear diffusion is the simplest and the most intuitive diffusion model. The diffusion
tensor is replaced by the identity matrix I to impose constant diffusivity. This means
the diffusion process is independent of the evolving image structures; therefore, the
same for all pixels in the image [22].

For a bounded image f ∈ L∞(Ω), where Ω represents the rectangular 2-D image grid,
the PDE for linear diffusion is expressed as

∂tu = ∆u, (2.4)

u(x, 0) = f(x), (2.5)

where the Laplacian operator is defined as ∆u := (∂xxu + ∂yyu) in 2-D. This PDE
has a unique solution [9, pp. 43-56] that is given by

u(x, t) =

{
f(x) (t = 0)
(K√2t ∗ f)(x) (t > 0)

, (2.6)

where ∗ is the convolution operator defined as

(Kσ ∗ f)(x) :=

∫
R2

Kσ(x− y)f(y)dy. (2.7)

Here Kσ is a 2-D Gaussian with standard deviation σ > 0:

Kσ(x) :=
1

2πσ2
· exp (−|x|

2

2σ2
). (2.8)

We see that reaching a stopping time T in diffusion process is equivalent to convolving
the image with a Gaussian of standard deviation σ where the relation is T = 1

2
σ2.

Gaussian as a Green’s function helps interpret the evolution of the linear diffusion
much better. It provides a visual description of the convolution filter. It is obvious
from the Gaussian filter that the new value of a pixel after linear diffusion process
is nothing but a Gaussian weighted average of the neighbouring pixels. Another
advantage is that the Gaussian scale-space is one of the well-studied scale-spaces in
the literature [26] [10].

Although it is simple, intuitive and well-studied, it has several disadvantages. The
process is completely independent of the underlying image structure. Therefore, as
it removes the noise and blurs the image, it also blurs and delocalizes important
structures in the image, such as edges and corners [22]. This is often undesired.
However, these problems can be addressed by nonlinear diffusion models.
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2.1.2 Isotropic Nonlinear Diffusion

The isotropic nonlinear diffusion is remedy for the disadvantages of the linear diffu-
sion. It adapts the diffusion process according to the evolving image structures to
preserve discontinuities [22]. Therefore, in the scale-space representation edges are
well-localized and survive long. The PDE of this model proposed by Perona-Malik [16]
is

∂tu = div(g(|∇uσ|2)∇u). (2.9)

σ is not in the original work of Perona and Malik [16] and added later by Catté et
al. [5]. Here uσ := Kσ ∗u smoothes the image with a Gaussian prior to differentiation,
thus allows to establish well-posedness properties for this process.

The basic idea here is that with the help of diffusivity function g, the diffusion process
is slowed down at possible edges to favor diffusion within the segments other than at
segment boundaries. As a result, edges are preserved. In order to reach this goal, a
proper diffusivity function g(s2) must follow these properties [23]:

• g > 0 and g ∈ C∞

• g(0) = 1, decreasing in s2 on [0,∞) and lims2→∞ g(s2) = 0.

There are several diffusivity functions available in the literature. However we will
only present three of them here which are mentioned often in the thesis.

• Diffusivity function proposed by Perona and Malik [16]:

g(s2) =
1

1 + s2/λ2
(λ > 0). (2.10)

λ controls the importance of an edge and gradient magnitude s2 serves as a
fuzzy edge detector. The edges where the gradient magnitude is less than λ
are smoothed by forward diffusion while the edges having gradient magnitude
greater than λ are even enhanced by backward diffusion.

• Weickert’s diffusivity [22]:

g(s2) =

{
1 (s2 = 0)
1− exp −3.31488

(s/λ)8
(s2 > 0)

. (2.11)

It decays more rapidly comparing to (2.10). Therefore, discontinuities survive
for a longer time and more segment-like results can be obtained.

• Learned diffusivity family:

g(s2) =

(
1 +

s2

λ2

)−γ
(λ > 0). (2.12)
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It is proposed in a very recent research on natural image statistics [17]. The
diffusivity and its parameters are learned from the natural images.

2.1.3 Anisotropic Nonlinear Diffusion

The isotropic nonlinear diffusion still has a scalar diffusivity that depends on only the
magnitude of the edges. This can be extended anisotropically to the direction of the
local structure by exchanging the scalar diffusivity function by a diffusion tensor [22].
The diffusion tensor is a symmetric, positive definite and 2 × 2 matrix. It can be
formulated as

D(∇uσ) := (v1|v2)diag(λ1, λ2)

(
vT1
vT2

)
= λ1v1v

T
1 + λ2v2v

T
2 . (2.13)

Here v1, v2 are the eigenvectors and λ1, λ2 are the corresponding eigenvalues. The
diffusion tensor needs to reveal local image structure. Therefore, the eigenvectors and
the eigenvalues can be steered according to the structure tensor which is an important
representative of the local image structures [22]. The structure tensor is defined as

Jρ(∇uσ) := Kρ ∗ (∇uσ∇uTσ ). (2.14)

This matrix notation also prevents the cancellation of the adjacent gradients having
the same direction, but opposite orientation that is a problem present in isotropic
nonlinear diffusion for a large σ. The reason that the matrix is convolved with a
Gaussian is to integrate the gradients in a neighbourhood of ρ [23]. One eigenvector
of the structure tensor is parallel and the other one is perpendicular to the local
structure with corresponding eigenvalues µ1 and µ2.

The diffusion tensor can use the eigenvectors of the structure tensor to adapt itself
to the direction of the local structure. Moreover, the eigenvalues can be adapted
according to the goal of the model. Here, we present two anisotropic diffusion models
used in the experiments of this thesis.

Edge-Enhancing Diffusion

As the name suggests, this diffusion is specifically designed to favor diffusion along
edges and slow it down across edges [22]. Therefore, the edges are preserved and
even enhanced up to a scale as the image evolves. This can be achieved by setting
ρ to 0 so that one eigenvector of the structure tensor is parallel and the other one is
perpendicular to the local image gradient. This leads to the corresponding eigenvalues
µ1 = |∇uσ|2 and µ2 = 0. Now each direction can be treated separately by tuning the
eigenvalues of the diffusion tensor as

λ1(µ1) := g(µ1), (2.15)

λ2 := 1 (2.16)
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Coherence-Enhancing Diffusion

Coherence enhancing diffusion is specifically designed to steer the process according
to flow-like coherent structures [22]. The goal is to favor diffusion along the flow-like
lines and slow it down across them. This model can be achieved by setting ρ > 0
and tuning the eigenvalues of the diffusion tensor separately to the eigenvalues of the
structure tensor as

λ1 := α, (2.17)

λ2 :=

{
α (µ1 = µ2)
α + (1− α) exp ( −C

(µ1−µ2)2m ) (else)
(2.18)

for C > 0 and m ∈ N. Here (µ1−µ2) is the coherence measure and 0 < α < 1 ensures
that D is uniformly positive definite.

2.2 Discretizations

All the diffusion models mentioned in Section 2.1 are continuous models and need to
be discretized to be applied to digital images. A digital image can be thought as a
sampling of a continuous image on to a finite pixel grid. With grid sizes h1, h2, in
x and y directions, respectively, and time step size τ , u(xi, yi, tk) approximates uki,j
where xi = (i− 1

2
)h1, yj = (j − 1

2
)h2 and tk = kτ [23].

2.2.1 Linear Diffusion

Using forward differences, one can find the derivative with respect to time as

∂tu =
uk+1
i,j − uki,j

τ
(2.19)

and second derivative with respect to x-axis as

∂xxu =
uki+1,j − 2uki,j + uki−1,j

h21
. (2.20)

Extending this derivatives in y direction, Equation 2.4 becomes [23]

uk+1
i,j − uki,j

τ
=
uki+1,j − 2uki,j + uki−1,j

h21
+
uki,j+1 − 2uki,j + uki,j−1

h22
.

This equation can be explicitly solved for uk+1
i,j as

uk+1
i,j = (1− 2

τ

h21
− 2

τ

h22
)uki,j +

τ

h21
uki+1,j +

τ

h21
uki−1,j +

τ

h22
uki,j+1 +

τ

h22
ui,j−1.
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This explicit scheme can be represented with the stencil

0 τ
h22

0
τ
h21

1− 2 τ
h21
− 2 τ

h22

τ
h21

0 τ
h22

0

where each weight refers to the corresponding locations that increase from bottom
left to top right

(i-1,j+1) (i,j+1) (i+1,j+1)
(i-1,j) (i,j) (i+1,j)

(i-1,j-1) (i,j-1) (i+1,j-1)

Stability. A discrete model is stable when the sum of all weights in its stencil is 1
and the weights are nonnegative [23]. Stencil weights for the linear diffusion sum up
to 1 and all non-central weights are nonnegative. Therefore, the condition on stability
depends on the nonnegativity of the central weight imposing a limit for the time step:

τ ≤ 1
2
h21

+ 2
h22

. (2.21)

Boundaries. Since pixel grid is finite, boundaries require to be treated specially.
Neumann boundary conditions can be used to induce 0 gradient at boundaries as:

nT∇u = 0 on ∂Ω× [0,∞) (2.22)

where n is the outer normal vector at the image boundaries ∂Ω. This can be realized
for discrete settings by mirroring the pixels at boundaries.

2.2.2 Isotropic Nonlinear Diffusion

Discretization of the isotropic nonlinear diffusion equation (2.9) with finite differences
leads to [23]

uk+1
i,j − uki,j

τ
=

1

h1

(
gki+1,j + gki,j

2
·
uki+1,j − uki,j

h1
−
gki,j + gki−1,j

2
·
uki,j − uki−1,j

h1

)

+
1

h2

(
gki,j+1 + gki,j

2
·
uki,j+1 − uki,j

h2
−
gki,j + gki,j−1

2
·
uki,j − uki,j−1

h2

)
.

When it is solved for uk+1
i,j , it yields the stencil

0 τ
2h22

(gi,j+1 + gi,j) 0

τ
2h21

(gi,j + gi−1,j)
1− τ

2h21
(gi+1,j + 2gi,j + gi−1,j)

− τ
2h22

(gi,j+1 + 2gi,j + gi,j−1)
τ

2h21
(gi+1,j + gi,j)

0 τ
2h22

(gi,j + gi,j−1) 0

9



Stability. The stencil weights sum up to 1 and non-central weights are nonnegative.
Similar to the linear diffusion, stability depends on the nonnegativity of the central
weight as

τ max
i,j
|(gi+1,j + 2gi,j + gi−1,j)

2h21
+

(gi,j+1 + 2gi,j + gi,j−1)

2h22
| < 1 (2.23)

Since 0 < gi,j ≤ 1, this yields the following limit on time step size:

τ <
1

2
h21

+ 2
h22

. (2.24)

Boundaries. Similar to the linear diffusion, Neumann boundary condition (Equation
2.22) can be used to impose 0 gradient at boundaries by mirroring boundary pixels.

This explicit scheme can be rewritten in a compact way [23]. When we represent the
2-D image as a 1-D vector u = (u1, u2, ..., uN)T , the explicit scheme can be rewritten
as a system of equations:

uk+1 − uk

τ
= A(uk)uk. (2.25)

When we let a single index k(i, j) represent the index (i, j), then this N ×N matrix
A has entries ak,l satisfying

ak,l =


gk+gl
2h2n

(l ∈ Nn(k)),

−
∑2

n=1

∑
l∈Nn(k)

gk+gl
2h2n

(l = k),

0 (else),

(2.26)

where Nn(k) is representing the neighboring pixels of k in n-directions.

Solving for uk+1 gives

uk+1 = (I + τA(uk))uk, (2.27)

which can be simplified as

uk+1 = Q(uk)uk. (2.28)

2.2.3 Anisotropic Nonlinear Diffusion

For D =

(
a b
b c

)
equation (2.3) can be rewritten as

∂tu = div(D · ∇u) = ∂x(a∂xu) + ∂x(b∂yu) + ∂y(b∂xu) + ∂y(c∂yu). (2.29)
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Using finite differences for the homogeneous derivative terms as in the isotropic non-
linear diffusion case and central differences for the mixed derivative terms as

∂xu =
uki+1,j − uki−1,j

2h1
, (2.30)

equation (2.29) becomes [23]

uk+1
i,j − uki,j

τ
=

1

h1

(
aki+1,j + aki,j

2
·
uki+1,j − uki,j

h1
−
aki,j + aki−1,j

2
·
uki,j − uki−1,j

h1

)

+
1

2h1

(
bki+1,j ·

uki+1,j+1 − uki+1,j−1

2h2
− bki−1,j ·

uki−1,j+1 − uki−1,j−1
2h2

)

+
1

2h2

(
bki,j+1 ·

uki+1,j+1 − uki−1,j+1

2h1
− bki,j−1 ·

uki+1,j−1 − uki−1,j−1
2h1

)

+
1

h2

(
cki,j+1 + cki,j

2
·
uki,j+1 − uki,j

h2
−
cki,j + cki,j−1

2
·
uki,j − uki,j−1

h2

)

When it is solved for uk+1
i,j , yields the stencil

τ
4h1h2

(−bi−1,j − bi,j+1)
τ

2h22
(ci,j+1 + ci,j)

τ
4h1h2

(−bi+1,j − bi,j+1)

τ
2h21

(ai−1,j + ai,j)
1− τ

2h21
(ai−1,j + 2ai,j + ai+1,j)

− τ
2h22

(ci,j−1 + 2ci,j + ci,j+1)
τ

2h21
(ai+1,j + ai,j)

τ
4h1h2

(−bi−1,j − bi,j−1) τ
2h22

(ci,j−1 + ci,j)
τ

4h1h2
(−bi+1,j − bi,j−1)

Stability. When D is positive semidefinite, a and c are both nonnegative. How-
ever, b might have any sign that causes the weights marked as red have arbitrary
signs. Therefore, this standard discretization does not guarantee stability. However,
there exists nonnegative discretizations for a positive definite D, if h1 = h2 and the
condition below holds [23].

cond(D) =
λmax
λmin

≤
1 + 1

2

√
2

1− 1
2

√
2

= 3 + 2
√

2 (2.31)

Although this condition limits anisotropy, it guarantees stability. This nonnegative
discretization gives the stencil
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τ(|bi−1,j+1|−bi−1,j+1)

4h1h2

+
τ(|bi,j |−bi,j)

4h1h2

τ(ci,j+1+ci,j)

2h22
− τ(|bi,j+1|+|bi,j |)

2h1h2

τ(|bi+1,j+1|+bi+1,j+1)

4h1h2

+
τ(|bi,j |+bi,j)

4h1h2

τ(ai−1,j+ai,j)

2h21

− τ(|bi−1,j |+|bi,j |)
2h1h2

1− τ(ai−1,j+2ai,j+ai+1,j)

2h21

− τ(|bi−1,j+1|−bi−1,j+1+|bi+1,j+1|+bi+1,j+1)

4h1h2

− τ(|bi−1,j−1|+bi−1,j−1+|bi+1,j−1|−bi+1,j−1)

4h1h2

+
τ(|bi−1,j |+|bi+1,j |+|bi,j−1|+|bi,j+1|+2|bi,j |)

2h1h2

− τ(ci,j−1+2ci,j+ci,j+1)

2h22

τ(ai+1,j+ai,j)

2h21

− τ(|bi+1,j |+|bi,j |)
2h1h2

τ(|bi−1,j−1|+bi−1,j−1)

4h1h2

+
τ(|bi,j |+bi,j)

4h1h2

τ(ci,j−1+ci,j)

2h22
− τ(|bi,j−1|+|bi,j |)

2h1h2

τ(|bi+1,j−1|−bi+1,j−1)

4h1h2

+
τ(|bi,j |−bi,j)

4h1h2

Boundaries. Neumann boundary condition can also be realized for this model by
mirroring pixels at the boundaries.

2.3 Fast Explicit Diffusion Scheme

When the diffusion models are discretized with the explicit scheme as in Section 2.2,
each model has a limit for time step size to be stable over time [23]. The explicit
scheme is simple to implement; however, it is really slow with these time step restric-
tions. With such small time steps, the time to reach a certain stopping time is long.
However, one advantage is that it is suitable for parallel schemes. As can be seen
from the discretizations, each new grey value computation at time step k + 1 only
depends on the grey values in time step k. Therefore, each computation is completely
independent of each other. However, this is not the end of the story. This scheme has
been shown to be sped up in sequential programmes by Fast Explicit Scheme (FED)
which can also be applied to parallel programmes.

The idea is as follows. Grewenig et al. [8] [7] showed that a box filter of length 2n+ 1
can be obtained by convolving n explicit linear diffusion filters having different time
step sizes. These step sizes can be computed from the stable step size τstable as

τi = τstable
1

2cos2(π 2i+1
4n+2

)
i = 0, 1, ..., n− 1. (2.32)
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Figure 2.1: Schematic comparison of FED to a standard explicit scheme. Illustration:
P. Gwosdek [13]

After one cycle of diffusion schemes with varying τis, the box filter is approximated.
This one cycle takes time

θ = τ0 + τ1 + ...+ τn−1 = τstable ·
n2 + n

3
. (2.33)

From the central limit theorem, it is also known that a Gaussian can be well-
approximated by convolving box filters iteratively [23]. So can the linear diffusion.
This means that repetition of this FED cycle can approximate linear diffusion.

In this framework up to half of the τis violate time step size τstable for stability as
in Figure 2.1; however, one cycle reaches the box filter at the end which is already
stable. Hence, further iterations of it for the diffusion process do not violate the
stability conditions.

As a result, Equation 2.33 shows that with n steps a stopping time of order O(n2) can
be reached using FED scheme instead of O(n). It offers a remarkable speed up and
even outperforms semi-implicit and AOS schemes where they are applicable [23]. It
can also be generalized to all diffusion models as long as the iteration matrix A(uk) is
symmetric and constant during one FED cycle. Since a box filter is already efficient,
using FED scheme for the linear diffusion is not necessary.

2.4 Scale-Space Concept

Images include features which only appear at a certain range of scales. This re-
quires to analyse images in different scales. Scale-spaces create a multiscale image
representation by embeding image f : R2 → R into a family

{Ttf |t > 0} (2.34)

with some requirements [23]. These requirements can be grouped into three classes:
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• architectural properties: such as semi-group property

T0f = f

Tt+sf = Tt(Tsf) ∀s, t ≥ 0

• simplification: such as causality, maximum-minimum principle. These re-
quirements are to make sure that images gets simpler as the scale increases i.e.
no new structures are introduced.

• invariances: such as translation and rotation invariances

One of the oldest scale-spaces is Gaussian scale-space that was invented by Iijima [10]
and reinvented by Witkin [26] in the western world. PDEs of diffusion processes
also constitutes scale-space with the original image as a initial value. Scale-space
properties of the diffusion models, which we discuss in this thesis, are analysed com-
prehensively by Weickert in [22].

2.5 Mean Squared Error

The Mean Squared Error (MSE) measures the mean of the squared differences be-
tween actual and estimated values. It can be formulated for actual data X and its
estimation X̄ as:

MSE =
1

n

n∑
i=1

(X i − X̄ i)
2 (2.35)

14



Chapter 3

Diffusion Echo

3.1 What is the Diffusion Echo?

As diffusion processes offer more and more transparent mathematical modelling and
well suited models for specific applications in image processing and computer vision, it
is more and more important to understand the underlying true process of any existing
or newly designed model. For the linear diffusion this is easy. There exists a closed
form solution to its PDE as a Gaussian [9, pp. 43-56]. This makes the model easy to
interpret and offers a intuitive description to it. It tells us how exactly the diffusion
filter looks like. Although nonlinear models may provide more plausible results, they
lack of such an interpretation.

Finding closed form solutions for PDEs of nonlinear diffusion is still an ongoing re-
search. The difficulty comes from the fact that the nonlinear processes are highly
dependent on the local image structure. Meaning that the diffusion filter for each
pixel is different and has the size of the image. However, Dam and Nielsen [6] showed
that there is a way to explicitly compute the shift variant diffusion filter. At each
iteration of the diffusion process, the filter weights are already computed. They use
these weights to form the filter. They call each filter formed for a single pixel its
Diffusion Echo. The name speaks for itself: it displays explicitly the behaviour of
one pixel on the diffusion model. In Figure 3.1, how the diffusion echoes of the same
pixel can change with the different diffusion models can be seen.

In their work [6] there are two types of diffusion echoes: the diffusion echo source
distribution and the diffusion echo drain distribution.

Diffusion Echo: Source

The diffusion echo source distribution defines how a specific pixel p contributes to
the each pixel q in the rest of the image [6]. It can be easily computed by creating an
auxiliary image as in Figure 3.2. This image has 1 at the pixel location of pixel p and
0 elsewhere, (discrete impulse function located at p). This image can be iterated as
the original image itself with the exact same weights computed for the original image.
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(a) head image (b) Linear diffusion (c) Isotropic nonlinear dif-
fusion with Perona-Malik
diffusivity

(d) Isotropic nonlinear dif-
fusion with Weickert’s dif-
fusivity

(e) Edge-enhancing diffu-
sion

(f) Coherence-enhancing
diffusion

Figure 3.1: Diffusion echoes (b)-(f) of the same reference point of 256 × 256 head
image (a) for different diffusion models.

Diffusion Echo: Drain

Diffusion echo drain distribution is the opposite of the source distribution. It defines
how a pixel p is contributed by the rest of the image pixels [6]. This defines exactly
the underlying diffusion filter for pixel p.

These two distributions are the same for the linear diffusion but different for the
nonlinear models [6]. The diffusion echo distribution used in this thesis is the source
distribution. For the simplicity, we will refer to it as diffusion echo in the rest of this
thesis.

Since diffusion echo shows how a pixel contributes to other pixels over time, it can
be regarded as the summary of the diffusion at that pixel up to a scale. Therefore,
it offers a well visualized description of the process used. We can obtain true infor-
mation and deductions related to the image structures by this description. Besides
the different diffusion schemes, it reveals the differences between various discretiza-
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Figure 3.2: Auxiliary image of size 256× 256 for the pixel at location (128,128)

tions and parameters. This steers the diffusion from being information simplifying to
information gathering technique. As Dam and Nielson states: ”Diffusion knows” [6].

With the implementation in this thesis, it is possible to compute many diffusion echoes
within seconds. Therefore, we can analyse more diffusion echoes and larger stopping
times. Detailed analysis on each diffusion model is explained in the following section.

3.2 Diffusion Echoes of Different Diffusion Models

3.2.1 Linear Diffusion

Figure 3.3 shows 12 of 64 diffusion echoes computed for the linear diffusion of the
256 × 256 head image together with the resulting image. Red dots are added after
the computations to mark the pixels that the diffusion echoes belong to for better
visualization. These pixels are selected uniformly i.e. 1 pixel is chosen in each 32×32
pixel block of an image. We see that each diffusion echo is a Gaussian. At the
boundaries, contribution of the mirrored Gaussians are also present. This perfectly
presents the modeling of the diffusion model: it is independent of the image itself and
uses mirrored pixels at the boundaries. In Figure 3.4, we see the same experiment with
different stopping times for the same reference pixel. We can also realize the relation
between stopping time T and the standard deviation of Gaussian σ as T = 1

2
σ2. As

the stopping time T is multiplied by 4 from Figure 3.4a to Figure 3.4c, we observe
that the σ of the Gaussian gets doubled.

3.2.2 Isotropic Nonlinear Diffusion

Figure 3.5 shows 12 of 64 uniformly sampled diffusion echoes for the isotropic non-
linear diffusion with Perona-Malik diffusivity of the 256 × 256 head image together
with the smoothed image. This sample is more interesting than its linear counter-
part. Each echo is a very coarse representation of the segment it belongs to. This
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Figure 3.3: Original image, smoothed image and 12 of 64 diffusion echoes after linear
diffusion with T=100, τstable = 0.25, FED cycles=5, and running time=88ms. Echoes
are rescaled from their original floating point range [0, 1] to integer range [0, 255].

comes from the nature of how this model is designed. It slows the diffusion down at
edges. However, this diffusivity does not decay sufficiently fast to give sharp segment
boundaries. We see in Figure 3.6 the same experiment with different stopping times.
The edges do not survive long enough for segment-like echoes. It is clear that when
the stopping time is small, a segment is visible but not complete. However, when the
stopping time is increased to let the pixel diffuse through the whole segment, then the
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(a) T=16 (b) T=64 (c) T=256

Figure 3.4: Diffusion echoes for linear diffusion of the same reference point of the
head image with different stopping times T.

edges are blurred. This time vs. sharpness problem can be addressed by Weickert’s
diffusivity.

In Figure 3.7, we present 12 of 64 echoes of the isotropic nonlinear diffusion with
Weickert’s diffusivity on the same image. Since it decreases more rapidly than Perona-
Malik diffusivity, it requires longer diffusion times. Due to the same reason it also gives
sharper edges. All the echoes are relatively well-located segments that the sampled
pixels belong to. In Figure 3.8, we see how long the edges survive around a single
pixel as the diffusion time increases. The other parameters are the same as in Figure
3.7. With this model it is more likely to find segment-like echoes with appropriate
parameter selection. Nevertheless, there are no new parameters introduced. The
same parameters as in smoothing applications can be chosen with larger stopping
times. The diffusion echoes acquired with this model can be useful for segmentation
algorithms.

3.2.3 Edge-Enhancing Diffusion

Intuitively, edge-enhancing diffusion seems a good choice for segmentation-like echoes.
It is designed to enhance edges so that they survive longer. Pruebab image (128×128)
can be an appropriate test case for this diffusion model. In Figure 3.9 we see 12 of
64 diffusion echoes acquired with this model. We see that the edges survive longer,
however, the corners are rounded. Figure 3.10 shows the same experiment with
different stopping times. We can see that the edges do not survive as long as they do
in isotropic nonlinear diffusion with Weickert’s diffusivity. In order to use this model
for segmentation, post processing would be required. One example would be tracing
the corners back to their original locations in a scale-space manner together with an
adaptive sampling that avoids pixel selection near edges.
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Figure 3.5: Original image, smoothed image and 12 of 64 diffusion echoes after
isotropic nonlinear diffusion with T=3000, FED cycles=10, λ = 1, τstable = 0.24,
σ = 0.5, and running time=1138ms. Echoes are rescaled from their original floating
point range [0, 1] to integer range [0, 255].

3.2.4 Coherence-Enhancing Diffusion

This diffusion model is intuitively expected to fail for segment-like echoes. Still it
raises curiosity about how the echoes would look like. Figure 3.11 shows 12 of 64
echoes computed for coherence-enhancing diffusion on 300 × 300 finger image. It is
a good test image for this model. The resulting echoes barely give any idea about
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(a) T=400 (b) T=600 (c) T=1600

(d) T=2000 (e) T=4000 (f) T=6000

Figure 3.6: Diffusion echoes for isotropic nonlinear diffusion with Perona-Malik dif-
fusivity of the same reference point of the head image with different stopping times
T.

the segments, however, describe the model to the fullest. Each pixel spreads its
value in the direction of the coherent structures. In Figure 3.12, we present the same
experiment with varying stopping times. We can see the spread of the same reference
pixel over time in the direction of coherence in a better way.

As can be seen from these figures, the samples consisting 64 diffusion echoes are
computed in a matter of seconds. With the efficient computation in this thesis, it is
now possible to see the effect of any parameter on any diffusion model. The advantage
here is two fold: Firstly, it may lead to finding the most appropriate model for any
application. Secondly, it may lead to modifying the existing models or discovering new
ones with a visual support. As a result, diffusion can be used to gather information
on images rather than simplifying the image [6].
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Figure 3.7: Original image, smoothed image and 12 of 64 diffusion echoes after
isotropic linear diffusion with Weickert’s diffusivity with T=100000, FED cycles=25,
λ=3, τstable = 0.24, σ = 0.5, and running time=10410ms. Echoes are rescaled from
their original floating point range [0, 1] to integer range [0, 255].
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(a) T=8000 (b) T=10000 (c) T=100000

Figure 3.8: Diffusion echoes for isotropic nonlinear diffusion with Weickert’s diffusivity
of the same reference point of the head image with different stopping times T.
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Figure 3.9: Original image, smoothed image and 12 of 64 diffusion echoes after edge-
enhancing diffusion with T=700, FED cycles=10, λ = 3, τstable = 0.24, σ = 2.5, and
running time=217ms. Echoes are rescaled from their original floating point range [0,
1] to integer range [0, 255].
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(a) T=50 (b) T=100 (c) T=150

(d) T=180 (e) T=250

Figure 3.10: Diffusion echoes for edge-enhancing diffusion of the same reference point
of the pruebab image with different stopping times T.
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Figure 3.11: Original image, smoothed image and 12 of 64 diffusion echoes after
coherence-enhancing diffusion with T=300, FED cycles=10, C = 1, α = 0.001,
τstable = 0.24, σ = 0.5, and running time=887ms. Echoes are rescaled from their
original floating point range [0, 1] to integer range [0, 255].
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(a) T=10 (b) T=50 (c) T=100

Figure 3.12: Diffusion echoes for coherence-enhancing diffusion of the same reference
point of the finger image with different stopping times T.
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Chapter 4

Efficient Computation of the
Diffusion Echo

In this chapter, we will explain the efficient computation of the diffusion echoes in
detail. First, we will give a general overview of GPU computing and CUDA. Subse-
quently, we will explain how to efficiently compute diffusion echoes in a parallel way
on GPU using CUDA. Then we will present experimental results with a wide range
of parameters. The chapter will end with a brief discussion.

4.1 GPU Computing

4.1.1 Parallel Programming on GPU

The need for fast computations has increased dramatically over the last decades
with increasing data sizes in scientific computations, complex problems and real-time
applications. However, speeding up CPUs cannot compensate for this need anymore.
That is why researchers exploited the idea of parallelism. As Owes et al. states in
their comprehensive overview on GPU computing [15]: ”Parallelism is the future of
computing”.

Even though, parallelism is very-well studied on CPUs, it offers tremendous speed
ups when exploited on GPUs due to their architecture. The GPUs today are not only
very powerful graphics engines as the game industry increasingly demands, but also
highly parallel programmable processors that outpace their CPU counterparts [15].
CPU architecture is designed in such a way that the pipeline is divided in time. Each
unit in the pipeline processes one stage of the whole process of a group of elements.
Output of one unit is input of the next one. Hence, all units can be used at the same
time in an efficient way. The GPU pipeline is, however, very different. It divides the
resources in space. Output of one unit in pipeline is input of another. Each of these
units is a highly specialized hardware.
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Figure 4.1: Floating-point operations per second for CPU and GPU [2]

4.1.2 History of Parallel Programming on GPU

In the past, the GPUs were designed as special-purpose fixed function processors
for graphics computations with several parallel programmable units. They required
hacky and very low-level programming with graphics terminology in order to use these
programmable parts. However, today the GPUs are well designed as a single parallel
programmable unit with several special-purpose fixed function units [15]. Figure 4.1
shows how GPUs are improving and getting faster over years. Today, ten thousands
of threads can run in parallel on cores of GPU multiprocessors while CPUs can only
afford tens of them. thousands of threads are even expected by the architecture for
full utilization [20]. Figure 4.2 shows the organization of these multiprocessors in the
modern GPUs. A closer look of a streaming multiprocessor is also seen in Figure 4.3.

4.1.3 General-Purpose Computation on GPU

Even though the graphics pipeline is still used in GPUs, parallel programs are not nec-
essarily graphics related [15]. This leads to the idea of General-Purpose computation
on GPU (GPGPU). This idea makes it possible to use the huge performance potential
of the GPUs for scientific computations and applications on large data. The increas-
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Figure 4.2: Organization of multiprocessors in a modern GPU [20]

ing image sizes make parallel programming very appealing to image processing and
computer vision tasks. The basic model in GPGPU programming is single-program
multiple-data (SPMD) [15]. This means that the same program is run by multiple
threads independently of each other. Therefore, one program is highly parallelizible
when the computation of each data point is independent of each other. In Section
2.2, stencils of discrete diffusion filters show that each pixel at a time step is com-
puted independent of each other. Therefore, explicit schemes for diffusion processes
are appropriate for GPGPU.

4.2 Parallel Programming with CUDA

As the GPGPUs got more and more popular, many program development platforms
were offered. Convergence of several parallel programmable GPU parts into a single
programmable part led to convergence of separate instruction sets into a single in-
struction set. Having a high-level programming language for one single programmable
unit made the programmers more focused on the programming task at hand rather
than the hardware specifications [15].

One of such high-level parallel programming languages is CUDA, which was intro-
duced by NVIDIA in 2006. CUDA is a scalable parallel programming model and
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Figure 4.3: Organization of a streaming multiprocessor in a modern GPU [20]
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Figure 4.4: Heterogeneous serial-parallel programming model of CUDA [20]

software environment which offers both data parallelism and multi-threading. In this
thesis we programmed the parallel implementations of the diffusion algorithms in
CUDA version 6.0. CUDA offers parallel programming by extending familiar pro-
gramming languages to parallel programming such as: CUDA C, CUDA Fortran,
Python. The language we chose in this thesis is CUDA C. It is a version of the C
language with extensions to make it more expressive in parallel programming. It is a
heterogeneous serial-parallel programming model [20]. The serial code runs on a CPU
thread which is called host and the parallel kernel code runs in thread blocks across
multiple processing elements of the GPU which is called device. Both host and device
code have their own separate memory space in DRAM. This programming model can
be better visualized as in Figure 4.4. This kernel function is defined with a global
declaration specifier and uses <<< >>> to specify the execution configurations when
it is called.

4.2.1 Parallel Kernel Execution Model

The structure of the kernel execution model is summarized as follows [20].

• Data should be copied from the host to the device memory to make it accessible
by each thread.

• The programmer has to launch the kernel by specifying the number of grids and
thread blocks explicitly.

• The same kernel program is run to compute the value of each thread concur-
rently.

• The values computed are written to the device memory and they can be read
in later kernel functions.
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Figure 4.5: Thread, Block and Grid Organization in CUDA [20]

• Data should be copied back to the host memory, if it will be used later in a
sequential code.

4.2.2 Thread-Block-Grid Hierarchy

Grids and thread blocks have to be arranged explicitly by the programmer, optimally
in such a way that the performance gain is maximal. Figure 4.5 shows the thread,
block and grid hierarchy in CUDA. One thread block can contain up to 1024 threads.
Hence, if more than 1024 threads are required, an according number of grids have to
be chosen such that the number of data points equals the number of grids times the
number of threads chosen in a block [2].

Each thread in a block has a thread id, denoted as threadIdx, and each block has a
block id, denoted as blockIdx. They can be accessed inside the kernel function [20].
This allows us to process different indices of arrays in each thread concurrently. Fig-
ure 4.6 shows how this addressing is done in 1-D. BlockIdx.x enables access to the
corresponding block with dimension BlockDim.x in x direction. Hence any thread in
this block can be accessed by the index blockIdx.x ∗ blockDim.x + threadIdx.x. In
our context it is used as a pixel index to compute each pixel value in parallel.

4.2.3 Thread Execution

Running threads in kernel functions in CUDA is asynchronous. If synchronization
among the threads is required, syncthreads() can be called in the kernel function
to keep all threads in a block waiting for the last thread to finish [20].

4.2.4 Memory Hierarchy

In CUDA, each thread has its own private local memory and each block of threads
has a fast shared memory. This shared memory can be thought of as a cache with
low-latency, which is visible to all threads in that block [20]. Also there is a global
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Figure 4.6: Thread addressing in CUDA [20]

memory to which all threads can reach. Figure 4.7 gives a detailed visualization of
the memory hierarchy in CUDA. The arrows in the figure show which memory units
are accessible to the host and/or the device code. CUDA also supports texture and
constant memory for special data formats [2]. Below only the texture memory will
be explained since it is a specialized memory for image-like formats.

4.2.5 Texture and Surface Binding

Data dependent applications can always benefit from clever memory types and align-
ments. Considering big data sizes, parallel programming can also benefit quite well.
As on the CPU, reading chunks of the memory into the caches in advance can accel-
erate applications dramatically. By doing so, the spatial locality is exploited, i.e. if
an element of an array is read, it is likely that an element in the neighbourhood will
be read. Hence, the neighbouring elements are placed in the cache together with the
requested element. However, for image-like data, 2-D locality is more appropriate.
In order to exploit dimensional locality CUDA uses texture caches to improve the
performance [25].

CUDA supports two data types that use the memory alignment mentioned above:
textures and surfaces. While Textures are read-only, Surfaces provide both read
and write operations [2]. There are 1-D, 2-D 3-D and 2-D layered textures and
surfaces. 2-D layered texture or surface is a sequence of 2-D textures or surfaces. We
experimented with 3-D and 2-D layered textures and surfaces in the Section 4.4.4,
since they are appropriate for the 3-D data in our context.

Textures in CUDA use floating point representation for addressing. For example, for
a 1-D array of size n, indices should be in the range [0, n − 1]. It is obvious that in
this range there can be subpixel locations. CUDA handles this with interpolation.
It supports nearest neighbor and linear interpolation [2]. 2-D layered textures are
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Figure 4.7: Memory hierarchy in CUDA [20]

slightly different. They use the same addressing within each layer but use integer
indices for layer addressing. In contrast to textures, surfaces use byte addressing.
For example, in order to access xth row and yth column in an integer valued image,
one should use (x ∗ (sizeof(int)), y) as the index. 2-D layered surface adressing is
similar to 2-D layered textures. It uses surface addressing within each layer; however,
it uses integer indices for layer addressing [2]. CUDA also has a limitation for the
dimensions of textures and surfaces. For 2-D layered textures and surfaces, the size
in x, y, z-dimensions cannot exceed 16384, 16384, 2048 respectively. For 3-D textures
and surfaces these limits are 4096, 4096, 4096 [1].

4.3 Parallel Computation of the Diffusion Echo on

GPU

In the work of Dam and Nielsen [6], diffusion echoes are computed only for several
pixels. It is easy to interpret the behaviour of the diffusion process from the echoes
but only up to small stopping times. However, each pixel has a different echo and
long diffusion times might be more interesting to see the general structures around the
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pixels. In this case, for an image with n pixels, there exist n echoes, which have to be
computed until a desired stopping time. Additionally, considering that each echo has
exactly the size of the original image, n images of size n need to be stored. This raises
the computational and memory complexity to O(n2). However, parallel programming
on the GPU mentioned above can reduce the computational time significantly.

Considering once more that the echoes show underlying image structure, we came up
with an intuitive conjecture.

Conjecture 1: Pixels within one segment of an image have similar diffusion echoes
as the diffusion time increases, i.e. they are correlated.

Therefore, storing all echoes would be redundant. The very first idea is to sample the
image grid uniformly and to compute the echoes of sampled pixels simultaneously.

As described in Chapter 3, this requires to create an auxiliary image for each sampled
pixel with the size of the original image as in Figure 3.2. After this initialization, the
diffusion is implemented iteratively. At each iteration the weights Q to diffuse the
original image are used to diffuse all images created. At the end of the iterations,
the diffusion echoes of all sampled pixels have been computed up to a stopping time.
This problem can be formulated as follows for m ≤ n sampled pixels:

(uk+1, ek+1
1 , ek+1

2 , ..., ek+1
m ) = Q(uk) · (uk, ek1, ek2, ..., ekm), (4.1)

u0 = f , (4.2)

where f is the original bounded image, u is the evolving image and eis are diffu-
sion echoes corresponding to the sampled pixels. This enables us to design parallel
algorithms for the diffusion models as in the following subsections.

4.3.1 Parallel Linear Diffusion Algorithm

The parallel linear diffusion algorithm is the same as the corresponding sequential
algorithm except that the function computing new values of the images at step k+ 1
is not a standard C subroutine. Instead, a kernel function is called to compute the
values in parallel. In Figure 4.8 we can see the new algorithm using the FED scheme.
In the inner cycle, S iterations of linear diffusion with varying time steps are iterated.
The time steps are computed according to the Equation (2.32). After S iterations
of the inner cycles, a box filter is approximated. Outer cycle iterates this box filter
R times in order to smooth image with the linear diffusion. The kernel function is
called with <<< blocksize, gridsize >>> configuration arranged according to the
3-D data in hand. As explained in Section 4.2, for a sequence of 65 images of size
256 × 256, gridsize in x and y directions is computed as gridsize.x = 256

blocksize.x
and

gridsize.y = 256
blocksize.y

, respectively, for any chosen blocksize. Similarly, in z direction,

it is computed as gridsize.z = 65
blocksize.z

. If the result of the division is fractional,
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Figure 4.8: Parallel linear diffusion algorithm

then it should be rounded up in order to comprise all the data points. How this kernel
function looks like will be explained in the next section.

4.3.2 Parallel Isotropic Nonlinear Diffusion Algorithm

Similar to the linear diffusion case, the sequential algorithm to compute isotropic
nonlinear diffusion can be used in the parallel algorithm. As in Figure 4.9, the
FED scheme is adapted to the isotropic nonlinear scheme as follows: In the outer
FED cycle, only the original image is presmoothed with linear diffusion. Then the
diffusivities are computed depending on the smoothed image. As required in the FED
scheme, explained in Section 2.3, the iteration matrix A(uk) must be kept constant
during diffusion with varying time steps. That is why the diffusivity calculation is in
the outer cycle. In the inner cycle, the diffusivities are used to diffuse all the images
in the sequence (diffusion echo e or original image u). While the presmoothing and
diffusivity computation are on the evolving original 2-D image, the diffusion process
is on the whole 3-D data. That is why a different block and grid configuration is
required for kernels computing linear diffusion and diffusivity.

4.3.3 Parallel Edge-Enhancing Diffusion Algorithm

The parallel algorithm of edge-enhancing diffusion also follows from the sequential
model. The algorithm is similar to the isotropic nonlinear diffusion model except
that diffusivities are turned into diffusion tensor entries. This is to allow tuning the
diffusion separately in the direction along the edge and the direction across the edge
according to Equation (2.15). The algorithm can be seen in Figure 4.10.
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Figure 4.9: Parallel isotropic nonlinear diffusion algorithm

4.3.4 Parallel Coherence-Enhancing Diffusion Algorithm

This scheme is a modified version of the parallel edge-enhancing diffusion. As can be
seen from Figure 4.11, firstly, the structure tensor entries are computed on the original
image in the outer FED cycle. Then the structure tensor entries are smoothed by
linear diffusion until a desired integration scale is reached. Depending on the structure
tensor entries, the diffusion tensor entries are computed according to Equation (2.17).
This allows tuning the diffusion separately in the direction along and across the
coherent structures.

Before we move on to the design of the kernel functions, it is important to understand
the problem at hand. One can see from Equation (4.1) that the computation of the
time step k + 1 of each evolving image in the sequence is independent of each other.
This, firstly, led us to an intuitive idea of computing each echo simultaneously. But
when we see the big picture in the equation, we see once again that the diffusion
of each image is computed with an explicit scheme. The explicit scheme is highly
parallelizable as explained in Section 2.2. Therefore, this problem can be parallelized
in different directions. We discuss these parallelizations in the following subsection.
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Figure 4.10: Parallel edge-enhancing diffusion algorithm

4.3.5 Types of Parallelizations

Parallel Computation of Diffusion Echoes

This parallelization is the initial intuitive idea: computing diffusion echoes simulta-
neously. Images in the sequence in Equation (4.1) are computed in a parallel way
while the diffusion process within each image is computed sequentially. We can see
how this kernel looks like in the code snippet in Figure 4.12.

Parallel Computation of Diffusion

Second one is the exact opposite of the first one. The diffusion process within each
image is parallelized while the images in the sequence are visited sequentially. We see
the corresponding code snippet in Figure 4.13.

Full Parallelization

The beauty here is that both paralleizations are independent of each other. We see
in Equation (4.1) that computation of each pixel is independent of not only all other
pixels in the same image, but also all pixels in all other images. Therefore, these two
parallelizations can be combined together into a full 3-D parallelization. Each pixel

39



Figure 4.11: Parallel coherence-enhancing diffusion algorithm
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Figure 4.12: Parallel computation of diffusion echoes

in any image in the sequence can be computed in parallel. We can see how this kernel
function looks like in Figure 4.14.

4.4 Experiments

In this section, first, we experimented to see the effect of different types of paral-
lelization. Then we focused on the effect of grid and block sizes on the performance.
Moreover, we observed further speed up with texture and surface bindings. All the
parallel implementations of the diffusion algorithms in this thesis are run on NVIDIA
GeForce GTX 480 GPU with the specifications: 448 CUDA cores, 607 MHz. graphics
clock, 1215 MHz. processor clock, and 133.9 (GB/sec) memory bandwidth [3].

4.4.1 Effect of Different Parallelizations

In Table 4.1, we see the comparison of running times for the three types of paral-
lelizations and the sequential implementation. The running times are acquired for the
256× 256 head image (Figure 1.1a) and 64 uniformly sampled echoes. The isotropic
nonlinear diffusion with Weickert’s diffusivity is chosen since it is the slowest diffusion
model among others due to the slow decay of the diffusivity function. Therefore, one
needs large diffusion times compared to other models.
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Figure 4.13: Parallel computation of diffusion

Figure 4.14: Full parallelization
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Diffusion
Time vs. Par-

allelization

No Paral-
lelization

Parallel
Computation
of Diffusion

Echoes

Parallel
Computation
of Diffusion

Full Paral-
lelization

T=10 5900ms 1401676ms 3078ms 87ms
T=100 27330ms - 12294ms 342ms
T=1000 150260ms - 36885ms 1022ms
T=10000 997720ms - 118309ms 3272ms
T=100000 1275310ms - 376471ms 10410ms

Table 4.1: Running times for different type of parallelizations of isotropic nonlinear
diffusion with Weickert’s diffusivity, λ = 3, τ = 0.24, σ = 0.5 and number of FED
cycles= 25

It is interesting to see that the initial idea of computing echoes simultaneously fails
despite how intuitive it was. Parallelization of the diffusion echoes runs even slower
than the sequential code. However, this is not surprising. Because as can be seen
from the Figure 4.12, looping over the whole image domain in a parallel kernel is
nothing but running a sequential code on GPU. One thread running on one core of a
GPU is less efficient than running on a CPU. This type of parallelization is not tested
for further stopping times as marked in the table with ”-”. The second idea in the
third column already offers remarkable speed ups. It has only one loop and the loop
is limited to m+ 1 images in the sequence, which is much smaller than the number of
pixels n in the image. In the third column we see that the full parallelization offers
the most tremendous speed up. For stopping time 10 already a speed up by 67 is
gained. Fully parallel code can compute 67 echoes while sequential code diffuses one
image. Also as the diffusion time T increases, performance gain increase. From this
part on, full parallelization is used in all the experiments.

4.4.2 Effect of Block Size

As described in Section 4.2, the programmer explicitly defines the block and grid sizes.
They can be tuned according to the data size in the application in order to achieve
higher performance gains. One should remember the limit of 1024 threads per block.
Hence, multiplication of all three dimensions of the block size cannot exceed 1024. As
an additional requirement, the z-dimension of a block can not exceed 64. These and
more specifications can be found in [1]. In Table 4.2, we see the effect of different
block sizes. These block sizes are tried for both blocksize and blocksize2 variables
mentioned in Subsection 4.3.2. The cases that exceed the limitation mentioned are
marked as ”-”. In the experiment the same parameters as in the previous experiment
are used with a stopping time of 100000 for better comparison.

Best performance is achieved with the combination 16 × 16 × 1 as can be seen in
bold. In each row, running times decrease until the optimized combination of block
sizes in z-direction is reached. Specifically, we see a rapid decay from z = 1 to z = 2.
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Block
Size

(x× y)
vs. (z)

1 2 4 8 16 32 64

2× 2 136350ms 74630ms 44302ms 35723ms 33235ms 36501ms 51001ms
4× 4 39703ms 22754ms 15284ms 16102ms 21169ms 26061ms 45017ms
8× 8 12686ms 11762ms 13256ms 15176ms 21884ms - -

16× 16 10410ms 12889ms 15198ms - - - -
32× 32 14267ms - - - - - -

Table 4.2: Effect of block size

Block
Size

(x×y×z)
16×16×1 16×16×2 16×16×4 8× 8× 8 8×8×16 4×4×32 4×4×64

run
time

10410ms 12871ms 15195ms 15164ms 21862ms 26013ms 44917ms

Table 4.3: Effect of block size for blocksize2 when blocksize = 16× 16× 1

However, after the optimised point, increasing the size makes the performance worse.
This is expected, since 2-D locality within each image in the sequence is prior to the
locality in third dimension (Equation 4.1) in our problem. Same behaviour is also
seen in each column. However, it is surprising that the block size 32 × 32 × 1 does
not provide with better performance.

Since two block size variables control 2 different configurations, they should also
be analysed independently. It is obvious that increasing the size in z-direction of
blocksize2 would not result in any performance gain. To observe this, another exper-
iment is done by keeping blocksize constant to 16×16×1 while changing blocksize2.
Table 4.3 shows the running times for different blocksize2.z. x and y-directions are
arranged so that they are maximum within the limitations. We see that this does not
provide us with any gain, as we expected.

Intuitively, experimenting the other way around, i.e. increasing the z-direction of the
blocksize while keeping blocksize2 constant to 16 × 16 × 1, could have resulted in
better performance. However as can be seen in Table 4.4, it nearly has no effect.
In the rest of the experiments block size 16× 16× 1 will be used for both variables.

Block
Size

(x×y×z)
16×16×1 16×16×2 16×16×4 8× 8× 8 8×8×16 4×4×32 4×4×64

run
time

10410ms 10412ms 10414ms 10417ms 10434ms 10453ms 10510ms

Table 4.4: Effect of block size for blocksize when blocksize2 = 16× 16× 1
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Diffusion
Time

Run Time of
IND

Run Time of
EED

Run Time of
CED

T=10 68ms 109ms 134ms
T=100 204ms 326ms 353ms
T=1000 663ms 1058ms 1102ms
T=10000 2075ms 3307ms 3401ms
T=100000 6589ms 10490ms 10929ms

Table 4.5: Running times for isotropic nonlinear diffusion (IND), edge-enhancing
diffusion (EED) and coherence-enhancing diffusion (CED) with parameters: τstable =
0.24, σ = 0.5, and number of FED cycles= 10

4.4.3 Different Diffusion Models

In Table 4.5, the running times for the isotropic nonlinear, edge-enhancing and
coherence-enhancing diffusions are shown for a 256 × 256 image with same num-
ber of FED cycles. The reason that the edge-enhancing diffusion runs slower is
the computation of the additional diffusivity entries. Similarly, the reason that the
coherence-enhancing diffusion is running slightly slower than all the others is that
there are additional computations for the structure tensor and its smoothing.

4.4.4 Further Speed Up

CUDA offers further speed ups with the use of texture and surface bindings as men-
tioned in Section 4.2. This type of memory alignment is well suitable for our imple-
mentations. In our setting, the original image and m echoes can be treated as 3-D
or 2-D layered data. In order to bind 3-D texture, m + 1 images can be seen as one
3-D image. However, by the nature of our work, 2-D layered texture seems more
appropriate. The diffusion computation for each pixel in this 3-D image is computed
exactly the same; however, each pixel value only depends on the neighboring pixels
within each image. Hence, each image can be seen as one of the layers in 2-D layered
texture or surface.

We tested both 3-D and 2-D layered texture and surface bindings. In Table 4.6, we see
the comparison between naive parallel implementation, 3-D and 2-D layered texture
and surface bindings. Experiments are run with the isotropic nonlinear diffusion
with Weickert’s diffusivity on a 256 × 256 image with different number of diffusion
echo sample sizes. For a better comparison with the previous experiments, we used
stopping time T=100000. We see a slight speed up for all the sample sizes for texture
and surface bindings. However, the differences between 3-D and 2-D layered versions
are not remarkable. For the sample sizes 64 and 256, 2-D layered texture and surface
bindings runs slightly faster, while for the sample size 1024, 3-D version runs faster.

If required, the samples with more diffusion echoes can be computed manually by
running the code according number of times. For example, the sample with all dif-
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Sample Size
Naive

Implementation

3-D
Texture/Surface

Binding

2-D Layered
Texture/Surface

Binding

64 10410ms 9703ms 9484ms
256 40822ms 39313ms 39158ms
1024 162850ms 157984ms 159041s

Table 4.6: Effect of Texture and Surface binding

fusion echoes of a 256 × 256 image, i.e. 65536 diffusion echoes, can be computed by
running the code that can compute 1024 diffusion echoes 64 times.

4.5 Discussion

By exploiting parallelism on GPUs, tremendeous speed ups have been obtained. Still
this is not the limit. Multiple GPUs can be used to linearly speed up each experiment.
Also with the high performance acceleration in GPUs shown in Figure 4.1, more speed
ups will be provided for the very same implementations in the future.

Furthermore, echoes can be computed for all kinds of filters. By iterating the auxiliary
image together with the filter weights of the original image, one can obtain impulse
response of the filter at any pixel location in an efficient way. This filter echo provides
better understanding of the filter as it does to the diffusion filters.

One important point which is also worth discussing is the sampling. In the whole
work of this thesis, we used uniform sampling on the image grid. Adaptive sampling
remains as future work. With clever sampling methods, we can compute the echoes
corresponding to individual segments.

Another method to analyse important segments can be Principal Component Anal-
ysis. This is the next part of this thesis. We will explain it in detail in the following
chapter.
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Chapter 5

Compact Representation of the
Diffusion Echo

In this chapter, we will explain Principle Component Analysis in detail to form a
basis for understanding how it can be implemented on diffusion echoes. Moreover, we
will present an efficient way to compute the Principle Component Analysis. Then,
we will explain how Nystroem approximation can be applied to diffusion echoes. In
the following section, we will show experiments with wide range of images, diffusion
schemes and parameters. Discussion will end this chapter.

5.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most important statistical data
analysis methods. It is widely used in various fields in image processing and computer
vision such as pattern recognition and knowledge-based medical image analysis. Once
the underlying dynamics of the PCA are well-studied, it can be a powerful data
analysis tool. It is also parameter-free. Therefore, compact analysis of any data is
obtained without any user interaction.

The data obtained in scientific experiments today is complex and high-dimensional.
Since the underlying structure of the system which is to be discovered are not known
before the experiments, the measurements are unclear and even redundant [19]. Also
one has to take into consideration that the data can be noisy depending on the
data acquisition methods. However, what an experimenter wants is to extract the
quantities and the structures that represents the data in a compact way i.e. to find
the real parameters defining the scientific phenomena being experimented. This is
the actual goal of the PCA. It takes unclear and noisy data as input and outputs the
principal basis that represents this complex data the best. Hence, it can also be used
as a dimensionality reduction tool by eliminating redundant components [19].

In principle, the PCA finds another basis to represent the data which is a linear
combination of the original basis. The word linear makes this process a change of
basis. Let the original data be represented by an n × m matrix X, which has n
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measurements of a single experiment as rows and m trials of the same experiment as
columns and with the PCA, let a new representation of X be denoted by another
n×m matrix Y . The change of basis process of the PCA can be expressed as

PX = Y . (5.1)

The n× n matrix P which transforms X into Y contains the principle orthonormal
basis vectors for X in each row pi. Therefore, the crucial part here is the choice of P .
It should be such a transformation matrix that Y will have minimum redundancy [19].
Minimum redundancy means that any of the measurements can not be expressed in
a linear combination of any other. In other words any two rows of Y , yi and yj, are
uncorrelated.

In order to reach this goal, it is important to introduce a covariance measure. Co-
variance shows the correlation between two variables. For two row-vectors x1 and
x2, having zero-mean and size m, it is defined as

cov(x1,x2) =
1

m
x1x2

T . (5.2)

A positive value for the covariance means that the variables are positively correlated
i.e. they change together, while a negative value means they are negatively correlated
i.e. they change inversely. A zero covariance means that they are uncorrelated.
Since the data matrix X has more than 2 dimensions to be analysed, a covariance
measure generalized to higher dimensions is necessary. Covariance matrix of the high
dimensional data matrix X is defined as

CX :=
1

m
XXT (5.3)

Diagonal entries of this n×n symmetric matrix are the variances of each measurement
defined as var(xi) = cov(xi,xi), while the off-diagonal entries are the covariances of
any two different measurements. With the PCA, CX is transformed into CY , the
covariance matrix of Y . The goal of this transformation is that CY will have zero
off-diagonals so that yis are uncorrelated. This suggests that this transformation is
a diagonalization [19]. In order to reach this diagonalization CY can be rewritten as

CY =
1

m
Y Y T

=
1

m
(PX)(PX)T

=
1

m
PXXTP T

= P (
1

m
XXT )P T

CY = PCXP
T .
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For a symmetric matrix CX there exists an eigenvalue decomposition as CX =
EDET , where D is an n× n diagonal matrix with eigenvalue λi of CX in ith diag-
onal entry and E has the corresponding eigenvector as ith column for i = 1, 2, ..., n.
Furthermore, since we want each row of P to be orthogonal eigenvectors of CX , we
can substitute P = ET . This yields

CY = PCXP
T

= P (ETDE)P T

= P (P TDP )P T

= (PP T )D(PP T )

= (PP−1)D(PP−1)

CY = D.

Therefore, the eigenvalue decomposition of CX provides the diagonalisation desired.
With this result, we can conclude that the eigenvectors, vis, of CX are the principle
components of X and the corresponding eigenvalues, λis, are the variances of X
along each pi [19]. One should normalize the eigenvectors after the computations in
order to have orthonormal basis.

5.2 PCA of the Diffusion Echo

In Chapter 4, we explained how diffusion echoes of any diffusion model can be com-
puted in an efficient way. In 160 seconds, it is possible to compute 1024 echoes
diffused until the stopping time of 100000 (Table 4.6). Moreover, with an appropriate
choice of diffusivity function, we can obtain segment-like echoes. This is helpful to
analyse important structures. However, storing 1024 diffusion echoes for one image
is not practical. First of all, it requires 1024 × 256 × 256 bytes for a sample of 1024
diffusion echoes of a 256 × 256 image. Secondly, due to the uniform sampling, for
each individual structure in the image, there exist many similar diffusion echoes. Fi-
nally, with increasing sampling rates, there will be more similar diffusion echoes of
the same segment which are more redundant. Therefore, a compact representation of
the important structures with less images is desired.

As described in Section 5.1, the PCA on the diffusion echoes can provide with the
important structures as eigenechoes and their correspondent importance measure as
eigenvalues. This leads us to our second conjecture.

Conjecture 2: Eigenechoes corresponding to the largest eigenvalues will represent
the individual segments of the image.

When each diffusion echo is treated as an experiment on the image structures, each
pixel of the diffusion echo can be interpreted as an individual measure in the exper-
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iment. Therefore, each column of the data matrix X corresponds to one diffusion
echo. This can be achieved by concatenating each column of the 2-D diffusion echo
into a 1-D column vector of size n× 1, where n is the number of pixels in the image.
Furthermore, the mean of each diffusion echo is subtacted in order to obtain zero-
mean 1-D diffusion echoes as column vectors. Then the sampled m diffusion echoes
can be represented as f1,f2, ...,fm ∈ Rn, where m corresponds to the number of
experiments and each f i has zero-mean. In general m << n. Moreover, deviations
from the average image are in the center of our interest, so the average image f̄ as in
Equation (5.4) should be subtracted from each f i [24].

f̄ =
1

m

m∑
i=1

f i (5.4)

Then the data matrix becomes X = [f 1 − f̄ ,f 2 − f̄ , ...,fm − f̄ ] with covariance
matrix

CX :=
1

m
XXT (5.5)

having eigenvalues λ1 ≥ λ2 ≥ ...λm > 0 and the corresponding eigenechoes
v1,v2, ...,vm.

Since PCA is a change of basis, the original diffusion echoes can also be fully recon-
structed as

fi = f̄ +
m∑
j=1

< (fi − f̄),vj > vj, (5.6)

where <,> represents the dot product.

The eigenechoes corresponding to the largest eigenvalues represent the direction with
the most variation in the image, i.e. important structures. Therefore, using only k
eigenechoes corresponding to the k largest eigenvalues can be used to approximate
the diffusion echoes [24] as

fi ≈ f̄ +
k∑
j=1

< (fi − f̄),vj > vj, (5.7)

A good number for k can be determined by analysing the eigenvalues in decreasing
order. If the decay is rapid enough, then k eigenvectors corresponding to the first k
eigenvalues which are significantly larger than 0 can be chosen. This offers a compact
representation with a subspace consisting of f̄ and k eigenechoes. After the compu-
tation of the PCA, eigenechoes should be reshaped from the 1-D column vector to a
2-D image as inverse to the concatenation performed in the beginning.
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5.3 Efficient Computation of the PCA

Even though the PCA offers a compact representation, computation of it is cumber-
some for images. For an image of size 256× 256, CX has size 65536× 65536 which is
even large for storing. Therefore, we need more efficient algorithms to compute eigen-
value decomposition. The trick for the efficient computation is to find the eigenvalue
decomposition of the m×m matrix

T =
1

m
XTX (5.8)

instead of the n×n matrix CX by exploiting the connections between T and CX [24]:

• The m eigenvalues of T are eigenvalues of CX .

• T contains all non-vanishing eigenvalues of CX .

• The remaining (n−m) eigenvalues are zero.

• If wi is an eigenvector of T , then vi = Xwi is an eigenvector of CX .

This algorithm computes eigenvectors of a much smaller m×m matrix instead of an
n × n matrix. It offers remarkable speed ups since m << n in general. One should
remember to normalize eigenvectors after computations.

5.4 The Power Iteration for the Dominant Eigen-

vectors

As mentioned in the previous sections, we need the eigenvalues and the corresponding
eigenvectors of the matrix T in order to do PCA on diffusion echoes in an efficient way.
One way of finding the most dominant eigenvector with the corresponding eigenvalue
in an iterative way is the power iteration method. In order to extend it to the k most
dominant eigenvectors and eigenvalues, we can use the method of deflation [24]. The
whole algorithm then reads:

for i = 0, 1, 2, ..., k do
initialize w0

i ∈ Rm with a random normalized vector

for j = 0, 1, 2, 3, ... do

compute wj+1
i = Twj

i .

compute λj+1
i = |wj+1

i |.
normalize wj+1

i = wj+1
i /λj+1

i .

end for
update T ← T − λiwiw

T
i

end for
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The power iteration method guarantees the convergence of λji to the ith dominant
eigenvalue and the convergence of wj

i to the corresponding ith dominant eigenvector.

5.5 Nystroem Approximation

The Nystroem approximation is a method for estimating the eigenvectors of a sym-
metric similarity matrix

K = ΦΠΦT , (5.9)

where Φ = [φ1,φ2, ...,φn] has orthonormal eigenvectors of K in its columns and
Π is a diagonal matrix with corresponding eigenvalues, π1, π2, ..., πn, in its diagonal
entries [14]. In order to compute these eigenvectors, all the entries of K are required.
However, Nystroem suggests an approximation to these eigenvectors from the sampled
entries of K [21].

When m pixels are sampled from an image with n pixels, an m×m similarity matrix
KA for the image A, which consists these sampled pixels, can be obtained. Similarly,
KB can be obtained for the image B, which consists (n − m) non-sampled pixels,
as well as the m × (n−m) KAB, which contains the similarity measures between
sampled and non-sampled pixels. Then K can be permuted into the form:

K =

[
KA KAB

KT
AB KB

]
(5.10)

The first m eigenvectors of K can be approximated as

Φ̃ =

[
ΦA

KT
ABΦAΠ−1

A

]
, (5.11)

where the first m entries of Φ̃ are the eigenvectors, ΦA, of KA which are computed
as KA = ΦAΠAΦA

T [21]. The remaining (n − m) entries are approximated as a
weighted projection of KAB on ΦA with weights ΠA

−1. Then the similarity matrix
K can be approximated as

K̃ = Φ̃ΠAΦ̃T

=

[
ΦA

KT
ABΦAΠ−1

A

]
ΠA

[
ΦT

AΠ−1
A ΦT

AKAB

]
=

[
KA KAB

KT
AB KT

ABK
−1
A KAB

]
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5.5.1 Nystroem Approximation for Image Denoising

Talebi and Milanfar [21] use the Nystroem approximation in denoising for efficiency
concerns. Since filters for methods like BM3D and NLM are based on a similarity
measure between pixels in an image, an n × n filter needs to be computed for an
image having n pixels. Their algorithm to approximate the whole filter is as follows:

• Pre-smooth the image.

• Uniformly sample m pixels from the image.

• Find filters for the sampled m pixels.

• Permute the filters to form KA and KAB.

• Use Nystroem approximation to estimate the eigenvectors of the whole filter.

• Sort them in decreasing order according to their corresponding eigenvalues.

• Reverse the permutation to recover the original locations.

• Shrink the eigenvalues for denoising.

5.5.2 Nystroem Approximation for the Diffusion Echoes

The concurrent work [21] by Talebi and Milanfar is very similar to our work. We also
start with uniform sampling as they do. Although we follow a different method, we try
to reach the same goal: finding eigenvectors and eigenvalues of filters. In our context,
each diffusion echo of a sampled pixel is nothing but an affinity measure based on a
diffusion process. It contains diffusion weights between the sampled pixel and both
non-sampled and sampled pixels. Hence, we can also use Nystroem approximation to
estimate eigenechoes as follows:

• Permute all sampled diffusion echoes having zero-mean into the matrices KA

and KAB.

• Use the Nystroem approximation to estimate the eigenechoes of all the diffusion
echoes.

• Sort them in decreasing order according to their corresponding eigenvalues.

• Reverse the permutation to recover the original locations.
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5.6 Experiments

In this section, we present the results of the PCA on the diffusion echoes computed
in Chapter 4. First, we analyse the effect of diffusion time on the eigenechoes. Sec-
ond, we present the eigenechoes for different diffusion models. Then, we experiment
how Nystroem approximation performs on the diffusion echoes. Finally, we analyse
the effect of sample size. Due to the normalization of the eigenechoes at the end
of PCA, the eigenecho values are in the range of [-1, 1]. Therefore, all the eigene-
choes presented are rescaled to the range of [0, 255] by preserving average value 0
as 127.5. We implemented the PCA in C as explained in Sections 5.2, 5.3, and 5.4.
In the experiments, we iterated power method 10000 times in order to have a good
convergence. We adapted the implementation of Nystroem approximation from the
MATLAB code provided by Milanfar and Talebi in their website [4]. We run all the
implementations on an Intel Core i5 CPU.

5.6.1 Effect of Diffusion Time

Our aim in PCA on diffusion echoes is being able to analyse important image struc-
tures. Therefore, parameter selection is playing a significant role. Parameters should
be tuned such that diffusion echoes are good representatives of the segments they
belong to. All the parameters except the diffusion time can be selected as in the
denoising settings of diffusion models. However, diffusion time should be chosen care-
fully to make the pixel spread around and get the best segment representation as the
diffusion model allows.

In order to see the importance of the diffusion time, 64 diffusion echoes of the 256×256
head image is diffused with the isotropic nonlinear diffusion with Weickert’s diffusivity
until a small diffusion time of T = 1000. Then, the PCA is used to obtain 10
eigenechoes corresponding to the 10 largest eigenvalues. As we see in Figure 5.1,
the eigenechoes show important structures of the head image such as the skull and
small segments to which the pixel spreads its value around within the diffusion time.
However, most of the segments are not complete. They suffer from the incomplete
diffusion echoes due to the small diffusion time.

In Figure 5.2, we repeated the same experiment with a larger diffusion time of
T=250000. We see the effect of diffusing through the segment boundaries due to
the large diffusion time clearly in the eigenechoes 1, 9 and 10.

5.6.2 Different Diffusion Models

In this subsection, we show the resulting first 10 eigenechoes of 64 diffusion echoes
of different diffusion models together with their eigenvalue plots in decreasing order.
The diffusion time for each diffusion model is found experimentally.
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(a) eigenecho 1 (b) eigenecho 2 (c) eigenecho 3

(d) eigenecho 4 (e) eigenecho 5 (f) eigenecho 6

(g) eigenecho 7 (h) eigenecho 8 (i) eigenecho 9

(j) eigenecho 10

Figure 5.1: Eigenechoes for isotropic nonlinear diffusion with Weickert’s diffusivity
with λ = 3, stopping time T=1000, τstable = 0.24, σ = 0.5, FED cycles=25, sample
size=64, and running time=2.3 sec
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(a) eigenecho 1 (b) eigenecho 2 (c) eigenecho 3

(d) eigenecho 4 (e) eigenecho 5 (f) eigenecho 6

(g) eigenecho 7 (h) eigenecho 8 (i) eigenecho 9

(j) eigenecho 10

Figure 5.2: Eigenechoes for isotropic nonlinear diffusion with Weickert’s diffusivity
with λ = 3, stopping time T=250000, τstable = 0.24, σ = 0.5, FED cycles=25, sample
size=64, and running time=2.4 sec
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Linear Diffusion

In Figure 5.3, we see the first 12 eigenechoes of the linear diffusion with diffusion
time of T=500. Since Gaussians are not localized at the origin, it is difficult to
know what to expect as a result. However, the PCA performs quite well. Especially
the fourth eigenecho gives a very good representation of all Gaussians. It is also
interesting that the eigenechoes look like the basis of the discrete cosine transform
as a result of eigenvalue decomposition of the Laplacian operator. Moreover, we see
the logarithmically scaled plot of all the non-zero eigenvalues in decreasing order in
Figure 5.4. The linear-like decay in the plot suggests that the PCA works well on
this sample. Therefore, it reveals the 12 most important structures of the sample in
these first 12 eigenechoes.

Isotropic Nonlinear Diffusion

In Figure 5.5, we show the first 10 eigenechoes resulting from the PCA on the diffusion
echoes of the same head image diffused with the isotropic nonlinear diffusion with
Perona-Malik diffusivity. The eigenvalue plot in Figure 5.6 shows the good linear
decay for this experiment. Each eigenecho highlights a coarse representation of a
segment. We see that eigenechoes suffer from non-sharp segments as the diffusion
echoes due to the slow decay of the diffusivity function. Weickert’s diffusivity can
address this problem. In Figure 5.7, we show the eigenechoes of the head image
diffused with the isotropic nonlinear diffusion with Weickert’s diffusivity. We see that
the eigenechoes are not representing individual segments as we expected; however,
they are quite representative and interesting. This can also be seen well with the
rapid decay in the eigenvalue plot in Figure 5.8. These 10 eigenechoes are good
representatives of the whole sample. In the first eigenecho, the most fundamental and
frequent segment, skull, is found. In the second eigenecho, brain is the most visible
shape as the second biggest and frequent segment in the image. Towards the tenth
eigenecho, this ordering is not as ideal as the first 6. This might be caused by under-
sampling of the diffusion echoes so that the smaller segments are not represented
well enough in a sample of 64. Experiments in Section 5.6.4 will investigate this
hypothesis.

Edge-Enhancing Diffusion

Figure 5.9 shows the first 12 eigenechoes of the diffusion echo sample obtained for
the edge-enhancing diffusion on 128 × 128 pruebab image. They represent the main
structures of the image, i.e. the triangle and the rectangle, quite well, especially, in
the fifth eigenecho. We see the corresponding logarithmically scaled eigenvalue plot
in Figure 5.10. The rapid decay in logarithmic scale suggests that using the first 20
eigenechoes we can approximate the whole sample quite well.
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(a) eigenecho 1 (b) eigenecho 2 (c) eigenecho 3

(d) eigenecho 4 (e) eigenecho 5 (f) eigenecho 6

(g) eigenecho 7 (h) eigenecho 8 (i) eigenecho 9

(j) eigenecho 10 (k) eigenecho 11 (l) eigenecho 12

Figure 5.3: Eigenechoes for linear diffusion with stopping time T=500, τstable = 0.25,
FED cycles=5, and running time=3.0 sec
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Figure 5.4: Logarithmically scaled plot of the eigenvalues of corresponding eigene-
choes of experiment shown in Figure 5.3 in decreasing order

Coherence-Enhancing Diffusion

Although coherence-enhancing diffusion is not a good candidate for segment-like dif-
fusion echoes, it raises curiosity about whether PCA can analyse small and distributed
coherent structures resulting from this model. In order to analyse this, we ran PCA
on the coherence-enhancing diffusion echoes of the finger image. We see in Figure
5.11 that PCA combines all small coherent structures into a silhouette of the image.
This is especially visible in the forth eigenecho. However, the eigenechoes are not
representative enough for the whole sample. Corresponding eigenvalue plot in Figure
5.12 shows how badly PCA works for this sample.

5.6.3 Nystroem Approximation

The Nystroem approximation counterparts are tested for each PCA experiment. The
results of both methods result in similar representations of the image structures ex-
cept at some pixel locations. Figure 5.13 shows the Nystroem counterpart of the
experiment seen in Figure 5.7. We see that the problematic pixels are coinciding with
the sampled pixels. The reason for these sampled points being not well approximated
by Nystroem approximation is that it tries to approximate the whole eigenechoes
only with these sampled points. This works well for the similarity based methods
like BM3D and NLM as the work of Milanfar and Talebi [21] shows. These similarity
measures are more global then diffusion that they work the same for any two pixels in
the image as well as for two sampled points. However, this is not the case in diffusion.
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(a) eigenecho 1 (b) eigenecho 2 (c) eigenecho 3

(d) eigenecho 4 (e) eigenecho 5 (f) eigenecho 6

(g) eigenecho 7 (h) eigenecho 8 (i) eigenecho 9

(j) eigenecho 10

Figure 5.5: Eigenechoes for isotropic nonlinear diffusion with Perona-Malik diffusivity
with λ = 1, stopping time T=3000, τstable = 0.24, σ = 0.5, FED cycles=10, and
running time=2.6 sec
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Figure 5.6: Logarithmically scaled plot of the eigenvalues of corresponding eigene-
choes of experiment shown in Figure 5.5 in decreasing order

The diffusion echo of a sampled pixel can only reach the other sampled pixels within
the neighbourhood or in the best case within the same segment depending on the
diffusion time. Hence, using these sampled points that does not provide a similarity
measure for each other causes a bad approximation at those locations. This is also
visible in the eigenvalue plot in Figure 5.14.

5.6.4 Effect of Sample Size

All the experiments up to now use 64 diffusion echoes in a sample. Increasing the
sample size can improve the PCA. When the segments are well represented in the
samples, they will also be well represented in the eigenechoes. Hence, when the sam-
pling is more dense, more segments have a chance to be represented. Figures 5.15 and
5.17 shows the first 10 eigenechoes of the samples with 256 and 1024 diffusion echoes
obtained for the isotropic nonlinear diffusion with Weickert’s diffusivity, respectively.
It is visible that as the sample size increases, the better the representations get. This
can also be seen in the corresponding eigenvalue plots in Figures 5.16 and 5.18.

5.6.5 Representing All Diffusion Echoes

Eigenvalue plots show how the first 10 eigenechoes are good for representing the whole
samples. However, we are interested in representing all the diffusion echoes of an im-
age by fewer eigenechoes. In order to test this, we computed all the 65536 echoes for
the head image of size 256× 256 with the edge-enhancing diffusion with parameters:
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(a) eigenecho 1 (b) eigenecho 2 (c) eigenecho 3

(d) eigenecho 4 (e) eigenecho 5 (f) eigenecho 6

(g) eigenecho 7 (h) eigenecho 8 (i) eigenecho 9

(j) eigenecho 10

Figure 5.7: Eigenechoes for isotropic nonlinear diffusion with Weickert’s diffusivity
with λ = 3, stopping time T=100000, τstable = 0.24, σ = 0.5, FED cycles=25, and
running time=2.2 sec
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Figure 5.8: Logarithmically scaled plot of the eigenvalues of corresponding eigene-
choes of experiment shown in Figure 5.7 in decreasing order

λ = 2, σ = 0.5, τstable = 0.24, FED cycles= 20, and T = 1000. The model choice
depends on the good trade-off between the diffusion time and the segment represen-
tations. With edge-enhancing diffusion, it is possible to obtain sharp segments which
do not contain small details in a short diffusion time. The sample is too big to display
here; however, the resulting image after diffusion in Figure 5.19 might give an idea
about the diffusion echoes. Since this sample is big, PCA may take weeks to compute
the eigenechoes. That is why we also computed 4096 uniformly sampled diffusion
echoes with the same diffusion model with the same parameters of the head image.
Our goal is to represent all 65536 diffusion echoes by the first eigenechoes of 4096
diffusion echoes. We chose 4096 as sample size so that we can perform both PCA and
the reconstruction within a realistic time and also we can have less error compared
to the sample sizes 64, 256, and 1024.

After the PCA with 100 power iterations on the 4096 sampled diffusion echoes, we
used the resulting first 30 eigenechoes to reconstruct each mean-subtracted diffusion
echo g of the sample of 65536. Equation 5.12 is used for reconstruction [24]. In
order to measure the error of the reconstruction we computed the MSE between the
original echo g and its reconstruction g̃. The PCA takes 39 min. to compute first 30
eigenechoes and the reconstruction of the all diffusion echoes takes 73 min.

g̃ =
30∑
i=1

(gTvi)vi (5.12)
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(a) eigenecho 1 (b) eigenecho 2 (c) eigenecho 3

(d) eigenecho 4 (e) eigenecho 5 (f) eigenecho 6

(g) eigenecho 7 (h) eigenecho 8 (i) eigenecho 9

(j) eigenecho 10 (k) eigenecho 11 (l) eigenecho 12

Figure 5.9: Eigenechoes for edge enhancing diffusion with λ = 3, stopping time
T=700, τstable = 0.24, σ = 2.5, FED cycles=10, sample size=64, and running time=2
sec
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Figure 5.10: Logarithmically scaled plot of the eigenvalues of corresponding eigene-
choes of experiment shown in Figure 5.9 in decreasing order

As a result of the reconstruction of all 65536 diffusion echoes, we get minimum MSE
of 0.34, maximum MSE of 57.38, and average MSE of 10.83. The difference between
the minimum and the maximum MSE is large. This is due to the fact that some
of the diffusion echoes are represented well in the sample of 4096 diffusion echoes;
therefore, they are reconstructed quite well. However, some of the diffusion echoes
are not represented well due to the coarse sampling; therefore, they are reconstructed
with higher errors.

5.7 Discussion

Our experiments show us that the eigenechoes do not give individual segments of the
images as we expected with our second conjecture, especially for the diffusion models
like coherence-enhancing diffusion. However, with an appropriate choice of diffusion
model and diffusivity function, eigenechoes might give interesting representations of
the images by highlighting different image structures. For example, isotropic non-
linear diffusion with Weickert’s diffusivity with large diffusion times provides with
segment-like eigenechoes. It does not suffer from incomplete segments as isotropic
nonlinear diffusion with Perona-Malik diffusivity does or rounding of corners as edge-
enhancing diffusion does. Also with the increasing sample sizes, more segments of the
image have chance to be well-represented in eigenechoes.
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(a) eigenecho 1 (b) eigenecho 2 (c) eigenecho 3

(d) eigenecho 4 (e) eigenecho 5 (f) eigenecho 6

(g) eigenecho 7 (h) eigenecho 8 (i) eigenecho 9

(j) eigenecho 10 (k) eigenecho 11 (l) eigenecho 12

Figure 5.11: Eigenechoes for coherence-enhancing diffusion with C = 1, α = 0.001
stopping time T=300, time step size τstable = 0.24, FED cycles=10, sample size=64
and running time=2.8 sec
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Figure 5.12: Logarithmically scaled plot of the eigenvalues of corresponding eigene-
choes of experiment shown in Figure 5.11 in decreasing order

Considering the resulting eigenechoes and their rapidly decreasing eigenvalue plots,
we can say that the PCA works well in most of our experiments. The noise which
highly effects the quality of the results does not exist in our setting. Each diffusion
echo is a well-smoothed representation of the structure it refers to.

In Subsection 5.6.5, we showed that we are able to represent all 65536 diffusion
echoes of the head image with an average MSE of 10.83 using the eigenechoes of the
sample with 4096 diffusion echoes. Yet the error range between the minimum and the
maximum MSE is too wide, likewise the average MSE itself. In this case, identifying
the worst represented diffusion echoes might help us to improve the result of PCA by
including them in our samples. Moreover, increasing the sample size or the number
of eigenechoes used in the reconstruction would yield less average MSE. Another way
of decreasing the error can be finding more appropriate diffusion models with more
appropriate parameters.

Another point, worth to discuss, is sampling. While the uniform sampling is more
efficient, the nonlinear sampling methods yield more accurate results for the Nys-
troem approximation [12]. Considering the similarities between the PCA and the
Nystroem approximation, it is likely that clever sampling methods can also improve
our results. Moreover, with an appropriate sampling method we can already find
distinct individual segments so that PCA is not necessary.
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(a) eigenecho 1 (b) eigenecho 2 (c) eigenecho 3

(d) eigenecho 4 (e) eigenecho 5 (f) eigenecho 6

(g) eigenecho 7 (h) eigenecho 8 (i) eigenecho 9

(j) eigenecho 10

Figure 5.13: Eigenechoes with Nystroem approximation for isotropic nonlinear diffu-
sion with Weickert’s diffusivity with λ = 3, stopping time T=100000, τstable = 0.24,
σ = 0.5, FED cycles=25, and running time=0.56 sec
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Figure 5.14: Logarithmically scaled plot of the eigenvalues of corresponding eigene-
choes of experiment shown in Figure 5.13 in decreasing order
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(a) eigenecho 1 (b) eigenecho 2 (c) eigenecho 3

(d) eigenecho 4 (e) eigenecho 5 (f) eigenecho 6

(g) eigenecho 7 (h) eigenecho 8 (i) eigenecho 9

(j) eigenecho 10

Figure 5.15: Eigenechoes for isotropic nonlinear diffusion with Weickert’s diffusivity
with λ = 3, stopping time T=100000, τstable = 0.24, σ = 0.5, FED cycles=25, sample
size=256, and running time=33.1 sec
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Figure 5.16: Logarithmically scaled plot of the eigenvalues of corresponding eigene-
choes of experiment shown in Figure 5.15 in decreasing order
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(a) eigenecho 1 (b) eigenecho 2 (c) eigenecho 3

(d) eigenecho 4 (e) eigenecho 5 (f) eigenecho 6

(g) eigenecho 7 (h) eigenecho 8 (i) eigenecho 9

(j) eigenecho 10

Figure 5.17: Eigenechoes for isotropic nonlinear diffusion with Weickert’s diffusivity
with λ = 3, stopping time T=100000, τstable = 0.24, σ = 0.5, FED cycles=25, sample
size=1024, and running time= 20 min
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Figure 5.18: Logarithmically scaled plot of the eigenvalues of corresponding eigene-
choes of experiment shown in Figure 5.17 in decreasing order

Figure 5.19: Resulting image after edge-enhancing diffusion with λ = 2, σ = 0.5,
τstable = 0.24, FED cycles= 20, and T = 1000
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Chapter 6

Diffusion Echo-Driven Segment
Scale-Space

In Chapter 5, we analysed important structures of an image by performing PCA
on uniformly sampled diffusion echoes of it. With isotropic nonlinear diffusion with
Weickert’s diffusivity, we even obtained interesting segment-like eigenechoes with a
good choice of diffusion time. However, the eigenechoes are highly influenced by
the diffusion echoes and these diffusion echoes are highly dependent on the diffusion
times. A diffusion echo gives better localization with small diffusion times. In this
case, the resulting diffusion echo is not a complete segment. When it is diffused more,
the boundaries of the segments are delocalized.

However, we know that at any scale the diffusion echo holds the affinity measure
between pixels. More precisely, at each iteration of the diffusion process the weights
that a pixel contributes to each of its neighboring pixels are computed. These contri-
butions reflect how the pixel is similar to each neighboring pixel based on a diffusivity
function. By computing diffusion echo at each iteration, we also iterate these contri-
butions. Therefore, the diffusion echo holds the affinity measures between the pixel
and its neighborhood.

Dam and Nielsen [6] used this affinity measure to merge segments. They decide
merging two segments if the average affinity measure between the pixels in two regions
are higher than a threshold and vice versa. Getting inspired by this affinity measure
and the scale-space representation, which we metioned in Section 2.4, we came up
with another idea: ”Identify a segment in a coarse scale and trace it back in time for
better localization using diffusion echo.” We perform the identification of a segment
by thresholding any of the diffusion echoes at a coarse scale. Then we trace this
segment back in time. At each explicit step backwards, we compute the diffusion
echoes of the pixels in 3 × 3 neighbourhood (N (3 × 3)) of the segment boundaries
using the diffusivities of the previous step. If the pixel contributes more to the inside
of the segment, the pixel joins to the segment and vice versa. This process is repeated
until time reaches to 0. The detailed algorithm is as follows:
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s← auxiliary image for pixel in the target segment, i← 1
for i ≤ k + 1 do

presmooth image u
find diffusivities for u and save them in d[i]
diffuse u and s with d[i]

end for
threshold s to have binary representation of the segment
while k > 0 do

for all pixels p ∈ N (3× 3) of segment boundaries of s do
compute diffusion echo e at p with d[k]
pos← 0, neg ← 0
for j ∈ N (3× 3) of p and j 6= p do

if sj == 1 then
pos+ = ej

else
neg+ = ej

end if
end for
if pos > neg then

mark sp as 1
else

mark sp as 0
end if

end for
k ← k − 1

end while

In Figure 6.1, we show one example of a diffusion echo-driven segment scale-space for
isotropic nonlinear diffusion with stopping time T= 4096 together with the resulting
image. Since the diffusion process gets slower with increasing diffusion time, we
sampled the segments through the scales exponentially as stated for each scale in
the figure. This means that we increased our sampling rate exponentially as we get
closer to time zero. In this experiment we chose the learned diffusivity which decays
slower in order to have a coarser segment and to be able to observe clear changes
between scales. The reason for the choice of λ = 0.14 comes from the natural image
statistics [17]. Since we are interested in precise localizations, therefore, in each stable
explicit diffusion step, we did not use FED scheme in this experiment. Moreover, we
did not apply pre-smoothing prior to diffusivity computations.

We see from Figure 6.1 that the diffusion echoes help us trace the segment boundary
back in time. We can see that the boundary moves towards the actual boundary of
the segment. However, the final locations of the boundary pixels are not the exact
locations. They are stuck at strong edges through the scales. Yet this scale-space
representation can be more useful with edge-enhancing diffusion. It can trace back
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(a) T=4096 (b) T=2048 (c) T=1024 (d) T=512

(e) T=256 (f) T=128 (g) T=64 (h) T=32

(i) T=16 (j) T=8 (k) T=4 (l) T=2

(m) T=1 (n) T=0.5 (o) T=0.25 (p) result

Figure 6.1: Diffusion echo-driven segment scale-space for isotropic nonlinear diffusion
with learned diffusivity with T=4096, τ = 0.25, and λ = 0.14

the rounded corners caused by this diffusion model. Moreover, it can be more useful
for localizations of coarser segments in coarser scales.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Diffusion processes are used widely in image processing and computer vision. They
offer well-founded models from linear settings to nonlinear and anisotropic settings.
Each model differs in how they use the underlying image structures to steer the diffu-
sion. However, in nonlinear models, understanding this behaviour is not trivial. One
good way of visualizing this behaviour is computing diffusion echoes. They tell every-
thing about the diffusion filter. However, in sequential settings, it has computational
complexity of O(n2) for an image with n pixels. Also it is unpractical to store all n
diffusion echoes having n pixels as the original image. To this end, in our work we
exploited parallel programming on GPU with CUDA along with the FED scheme for
the efficient computation of the diffusion echoes and used the PCA to represent them
in a compact way.

The Efficient Computation of The Diffusion Echo. Firstly, we introduced
the need for the diffusion echoes as better visual descriptors for nonlinear diffusion
schemes. Then we established a background knowledge for the reader by introducing
various diffusion schemes, their discretizations, the FED scheme, the scale-space con-
cept and the MSE. We introduced the diffusion echo in a detailed way, with examples
of various diffusion models. In order to be able to compute many diffusion echoes
in a fast way, we focused on efficient parallel algorithms. We introduced GPGPU
computing to show that our problem is a good fit for parallel computations. Then
we introduced the software environment CUDA in detail to show how one can steer
their applications to parallel algorithms to gain speed ups if applicable. Following
the necessary information, we explained how to re-implement sequential diffusion al-
gorithms with the FED scheme in a parallel way. With the assumption that pixels
within a segment give similar diffusion echoes, we only computed the diffusion echoes
of the sampled pixels of an image. In the following experiments, we saw that with
the full parallelization one can reach tremendous speed ups. Within 160 seconds, it
is possible to compute 1024 diffusion echoes of a 256× 256 image diffused until large
stopping times. Furthermore, using texture and surface bindings in CUDA, better
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memory alignments for images can be obtained. In our experiments, we also gained
a further speed up by texture and surface bindings.

All these efficient computations allowed us to analyse many diffusion echoes sampled
from an image and diffused until large stopping times. We experimented with different
diffusion models and different parameters to better visualize the underlying image
structures that each model tries to emphasize. These image structures led us to
finding a compact representation for all the diffusion echoes of an image.

The Compact Representation of the Diffusion Echo. With these represen-
tation and memory concerns, we focused on an important statistical data analysis
method known as PCA. We explained how to apply the PCA on diffusion echoes
in detail. Following the PCA, we mentioned the Nystroem approximation to be
able to compare the results of both methods. In the experiments with the PCA,
we obtained interesting eigenechoes corresponding to the largest eigenvalues. They
are good representations for the image structures emphasized by the diffusion models.
Furthermore, we showed that the first 30 eigenechoes resulting from the PCA on 4096
edge-enhancing diffusion echoes can represent all 65536 diffusion echoes of 256× 256
head image with average MSE of 10.83. Also we experimented with the Nystroem
approximation and analysed the differences between two methods and the possible
reasons for these differences. The PCA outperforms the Nystroem extension in our
diffusion context.

Diffusion Echo-Driven Segment Scale-Space. We presented an application using
the diffusion echo. The diffusion echo is used to create a scale-space that traces back
the segments in time for better localization. We displayed an example of this scale-
space.

7.2 Future Work

The work in this thesis leads to various future work.

Adaptive Sampling. Uniform sampling is computationally cheap, however, it
causes redundancy in diffusion echo samples. The reason is that pixels within the
same segment give similar diffusion echoes. Using adaptive sampling methods this
redundancy can be reduced to minimum. This sampling method should select pixels
within the segments rather than at the segment boundaries.

Error Minimizing Using the PCA With a Gradient Descent Method. When
we used the first 30 eigenechoes of the sample with 4096 diffusion echoes in order to
reconstruct all 65536 diffusion echoes, some diffusion echoes were reconstructed with
higher error. This is due to the fact that those diffusion echoes are not present in
the sample of 4096 or less frequent. Hence, exchanging one of the diffusion echoes in
the sample of 4096 with one of the diffusion echoes that gives the highest error and
re-running the PCA on this new sample might cause decrease in the error. This can
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be embedded into a gradient descent algorithm as follows. After each run of the PCA
the reconstruction error is computed. Then the exchange mentioned is performed. If
the exchange of the segments causes a decrease in the average reconstruction error,
the exchange is kept, otherwise rejected. This iteration can be repeated until the
difference between the minimum and the maximum error is small enough.

Stochastic PCA. Instead of the gradient descent algorithm above which is compu-
tationally expensive, stochastic PCA [18] can be implemented. This may allow us to
add diffusion echoes on-the-fly when the PCA is computed. Therefore, at the end
of the PCA only the important diffusion echoes yielding a better presentation are
present in the sample.

Automated Segmentation. The efficient computation and the compact repre-
sentation methods in this thesis can be thought as a pipeline to find segmentation.
However, computing diffusion echoes are dependent on the parameters of the diffu-
sivity functions. A very recent research [17] on natural image statistics offers a family
of diffusivities whose parameters are estimated from the natural images. When this
learned diffusivity is embedded in the efficient computation part, a segmentation
method which only depends on the diffusion time can be obtained. This has partly
been tried, however, most of the images in the samples were not suitable for segmen-
tation. A new sample appropriate for segmentation with the corresponding learned
diffusivity might lead to an automated segmentation.

Osmosis Echo. Similar to diffusion, osmosis is one of the processes that requires
a strong mathematical intuition, hence, a better visual description. Computing the
osmosis echo can help us understand the underlying dynamics of this process.
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