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INSTITUT FÜR INFORMATIK

Lehrstuhl für Mustererkennung und Bildverarbeitung
Prof. Dr.-Ing. Hans Burkhardt

Georges-Köhler-Allee
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1 Singular Value Decomposition

1.1 Definition

For every real matrix A of dimensions m × n, there exist two orthogonal matrices: U =
[u1, ..um] ∈ Rm×m and V = [v1, ..vn] ∈ Rn×n such that

Σ = UT AV = diag(σ1, σ2, .., σp) ∈ Rm×n, (1)

where p = min{m, n}, and σ1 ≥ σ2 ≥ .. ≥ σp, or equivalently (due to orthogonality of U ,
V ):

A = UΣV T (2)

The σi, i ∈ 1..p are the singular values of A and this method for decomposing A according
to eq. (2) is widely known as the Singular Value Decomposition (or SVD) of the matrix
A.

1.2 Properties

The SVD reveals a lot about the internals of a matrix A. If we define as σr the smallest
non zero diagonal element of Σ, that is :

σ1 ≥ σ2 ≥ ... ≥ σr ≥ σr+1 = .. = σp = 0, (3)

then the following hold:

rank(A) = r (4)

N(A) = span{vr+1, .., vn} (5)

R(A) = span{u1, .., ur}, (6)

where N(A) and R(A) the null space and the range of the matrix A respectively.

The most appealing property of SVD, is expressed by the following theorem:



Theorem: Given the linear system of equations:

Ax = y, (7)

then the solution xLS ∈ Rn of this system of the form:

xLS =
r

∑

i=1

uT
i b

σi

vi, (8)

satisfies the following:

ρLS = ‖AxLS − b‖
2

= min
x

‖Ax − b‖
2

(9)

ρ2

LS = ||AxLS − b||22 =
m

∑

i=r+1

(uT
i b)2 (10)

∀x1 ∈ Rn, x1 = min
x

‖Ax − b‖
2

: ‖xLS‖2
≤ ‖x‖

2
(11)

Proof: Due to the orthogonality of U , V , we have that: ||UT ||22 = 1, and V V T = I. If
so then:

‖Ax − b‖
2

=
∥

∥UT
∥

∥

2
·
∥

∥A(V V T )x − b
∥

∥

2
=

∥

∥(UT AV )V T x − UT b
∥

∥

2
(12)

Now setting α = V T x and using eq. (1), eq. (12) becomes:
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but since:
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we can write the squared 2-norm of the vector Ax − b as

‖Ax − b‖2

2
=

r
∑

i=1

(σiαi − uT
i b)2 +

m
∑

i=r+1

(uT
i b)2 (15)

Our task is to find the vector x which minimizes ‖Ax − b‖2

2
. Since the vector x depends

on α, we can attempt to find the α minimizing ‖Ax − b‖2

2
instead. From eq. (15) we see

that ‖Ax − b‖2

2
is minimized if αi =

uT

i
b

σi

for i = 1..r. The elements αi for i = r + 1..m are
not important for the minimization. However if we set them to zero, we get the vector α

which minimizes ‖Ax − b‖2

2
on one hand, and has the smallest norm of all minimizers on

the other. Since, x = V α, and ‖x‖
2

= ‖V α‖
2

= ‖α‖
2
, the solution xLS shown in eq. (8)

minimizes ρLS = ||Ax − b||2, so that eq. (9) is satisfied, and has the smallest 2-norm of
all minimizers of ρLS, which means that eq. (11) is as well satisfied. By setting the αi’s
computed above into eq. (15), we get the residual value appearing in eq. (10).



2 The Pseudoinverse matrix

2.1 Definition

Given the matrix A its pseudoinverse A+ is a matrix of dimensions n×m, which amounts
to:

A+ = V Σ+UT (16)

In the preceding equation, the matrix Σ+ is a diagonal matrix of the form:

Σ+ = diag(
1

σ1

,
1

σ2

, ..,
1

σr

, 0, .., 0) ∈ Rn×m (17)

If so, then:

A+b = (V Σ+UT )b =

r
∑

i=1

uT
i b

σi

vi = xLS (18)

2.2 Insight
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Abbildung 1: Geometric interpretation of pseudoinverse functionality.

Let’s suppose we are interested in solving the linear system (7).

To ease the illustration of the problem, we suppose that A is a 2×2 matrix. We also assume
that dim(N(A)) = 1. If X the vector space in which x belongs, and since dim(X) =
dim(R(A)) + dim(N(A)), we deduce that dim(R(A)) = 1 for our example.

We suppose as well that Y is the vector space in which the vector y belongs. The two-
dimensional vector spaces X and Y are depicted in Fig. 1. The one-dimensional subspaces
N(A) and R(A) of X and Y respectively are depicted as lines in the figure. Note that in
the figure, R(A)− and N(A)−, stand for R(A)⊥ and N(A)⊥ respectively.

For solving (7), we consider the following two cases:

y = d and d ∈ R(A): The system has an infinite number of solutions. If x3 a solution
to the system, then xs = x3 + xN , where xN ∈ N(A), is as well a solution. All those
solutions belong to a one-dimensional translate of N(A), illustrated by the line Xs in the



figure. This line passes through x3, and is parallel to the line defined by N(A). As implied
by equations (18), (11), from all the solutions of the system, the solution delivered by the
pseudoinverse x4 = A+d will be the one with the minimum norm, that is the minimum
distance from the origin of the X space. The distance of x4 to the origin is minimized
only if x4 belongs to the orthogonal space of N(A), that is, x4 ∈ N(A)⊥.

Note that since x3 a solution of Ax = d, we have that Ax3 = d. In addition, x4 = A+d.
Thereby, x4 = A+Ax3. This means that the matrix A+A, projects vectors of X-space to
N(A)⊥. This projection is orthogonal, since N(A)⊥ is orthogonal to the Xs line.

y = b and b 6∈ R(A) . In this case the system has no solution. However, as implied
by equations (18), (9), the “solution” delivered by the pseudoinverse: x1 = A+b, when
mapped via A to the Y -space, gives a vector c = Ax1, on the R(A), so that the distance
of c to b is minimized.

Since c = Ax1 and x1 = A+b, we get c = AA+b. Since the vector c is an element of R(A)
with the minimum distance to b, it is the orthogonal projection of b to R(A). The matrix
AA+, defines therefore an orthogonal projection of a vector of the Y space to the R(A).

Note that in every case, the matrix A+, takes vectors of the Y - space and brings them
to vectors of N(A)⊥. This implies that: R(A+) = N(A)⊥. Those vectors of N(A)⊥, solve
the system Ax = yR, where yR the orthogonal projection of y to R(A) on one hand, and
have minimum distance from the origin of the X- space on the other.

Lets consider now the case, where Ax = e, e ∈ R(A)⊥. The orthogonal projection of e

to R(A) is the null vector in this case. The vector which solves the system Ax = 0 with
minimum norm is the null vector. In other words the pseudoinverse maps vectors of R(A)⊥

to the null vector. That is : N(A+) = R(A)⊥.

Based on these observations, we could conclude the following regarding the properties of
the pseudoinverse matrix:

2.3 Properties

1. R(A+) = N(A)⊥. Since N(A)⊥ = R(AT) (why?) we finally get: R(A+) = N(A)⊥ =
R(AT).

2. N(A+) = R(A)⊥. Since R(A)⊥ = N(AT) (why?) we finally get: N(A+) = R(A)⊥ =
N(AT).

3. A+A, defines the orthogonal projection of an arbitrary vector of the X space to
N(A)⊥. This has the following consequences:

(a) (A+A)T = A+A (why?)

(b) The matrix I − A+A defines the orthogonal projection of the vector to N(A).

(c) Since I − A+A ∈ N(A), we have: A(I − A+A) = 0, or AA+A = A.

4. AA+, defines the orthogonal projection of an arbitrary vector of the Y -space to
R(A). This has the following consequences:

(a) (AA+)T = AA+ (why?)

(b) The matrix I − AA+ is the orthogonal projection of the vector to R(A)⊥.

(c) We have already shown that: R(A)⊥ = N(A+). Thereby, A+(I −AA+) = 0, or
A+AA+ = A+.



3 Exercises

Based on what discussed in the previous sections show that:

1. (AT )+ = (A+)T

2. A++ = A

3. AT AA+ = AT

4. A+AAT = A+

5. If r = n then A+ = (AT A)−1AT

6. If r = m then A+ = AT (AAT )−1
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