ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG
 INSTITUT FÜR INFORMATIK

Lehrstuhl für Mustererkennung und Bildverarbeitung

Algorithmen zur digitalen Bildverarbeitung I

Pseudoinverse: A draft tutorial

Author: D. Katsoulas

1 Singular Value Decomposition

1.1 Definition

For every real matrix A of dimensions $m \times n$, there exist two orthogonal matrices: $U=$ $\left[u_{1}, . . u_{m}\right] \in \mathbf{R}^{m \times m}$ and $V=\left[v_{1}, . . v_{n}\right] \in \mathbf{R}^{n \times n}$ such that

$$
\begin{equation*}
\Sigma=U^{T} A V=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, . ., \sigma_{p}\right) \in \mathbf{R}^{m \times n} \tag{1}
\end{equation*}
$$

where $p=\min \{m, n\}$, and $\sigma_{1} \geq \sigma_{2} \geq . . \geq \sigma_{p}$, or equivalently (due to orthogonality of U, $V)$:

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{2}
\end{equation*}
$$

The $\sigma_{i}, i \in 1 . . p$ are the singular values of A and this method for decomposing A according to eq. (2) is widely known as the Singular Value Decomposition (or SVD) of the matrix A.

1.2 Properties

The SVD reveals a lot about the internals of a matrix A. If we define as σ_{r} the smallest non zero diagonal element of Σ, that is :

$$
\begin{equation*}
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r} \geq \sigma_{r+1}=. .=\sigma_{p}=0 \tag{3}
\end{equation*}
$$

then the following hold:

$$
\begin{array}{r}
\operatorname{rank}(A)=r \\
N(A)=\operatorname{span}\left\{v_{r+1}, . ., v_{n}\right\} \\
R(A)=\operatorname{span}\left\{u_{1}, . ., u_{r}\right\}, \tag{6}
\end{array}
$$

where $N(A)$ and $R(A)$ the null space and the range of the matrix A respectively. The most appealing property of SVD, is expressed by the following theorem:

Theorem: Given the linear system of equations:

$$
\begin{equation*}
A x=y, \tag{7}
\end{equation*}
$$

then the solution $x_{L S} \in \mathbf{R}^{n}$ of this system of the form:

$$
\begin{equation*}
x_{L S}=\sum_{i=1}^{r} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}, \tag{8}
\end{equation*}
$$

satisfies the following:

$$
\begin{align*}
\rho_{L S}=\left\|A x_{L S}-b\right\|_{2} & =\min _{x}\|A x-b\|_{2} \tag{9}\\
\rho_{L S}^{2}=\left\|A x_{L S}-b\right\|_{2}^{2} & =\sum_{i=r+1}^{m}\left(u_{i}^{T} b\right)^{2} \tag{10}\\
\forall x_{1} \in \mathbf{R}^{n}, x_{1}=\min _{x}\|A x-b\|_{2} & :\left\|x_{L S}\right\|_{2} \leq\|x\|_{2} \tag{11}
\end{align*}
$$

Proof: Due to the orthogonality of U, V, we have that: $\left\|U^{T}\right\|_{2}^{2}=1$, and $V V^{T}=I$. If so then:

$$
\begin{equation*}
\|A x-b\|_{2}=\left\|U^{T}\right\|_{2} \cdot\left\|A\left(V V^{T}\right) x-b\right\|_{2}=\left\|\left(U^{T} A V\right) V^{T} x-U^{T} b\right\|_{2} \tag{12}
\end{equation*}
$$

Now setting $\alpha=V^{T} x$ and using eq. (1), eq. (12) becomes:

$$
\begin{equation*}
\|A x-b\|_{2}^{2}=\left\|\Sigma \alpha-U^{T} b\right\|_{2}^{2} \tag{13}
\end{equation*}
$$

but since:

$$
\Sigma \alpha-U^{T} b=\left[\begin{array}{c}
\sigma_{1} a_{1}-u_{1}^{T} b \tag{14}\\
\sigma_{2} a_{2}-u_{2}^{T} b \\
\vdots \\
\sigma_{r} a_{r}-u_{r}^{T} b \\
-u_{r+1}^{T} b \\
\vdots \\
-u_{m}^{T} b
\end{array}\right]_{m \times 1}
$$

we can write the squared 2 -norm of the vector $A x-b$ as

$$
\begin{equation*}
\|A x-b\|_{2}^{2}=\sum_{i=1}^{r}\left(\sigma_{i} \alpha_{i}-u_{i}^{T} b\right)^{2}+\sum_{i=r+1}^{m}\left(u_{i}^{T} b\right)^{2} \tag{15}
\end{equation*}
$$

Our task is to find the vector x which minimizes $\|A x-b\|_{2}^{2}$. Since the vector x depends on α, we can attempt to find the α minimizing $\|A x-b\|_{2}^{2}$ instead. From eq. (15) we see that $\|A x-b\|_{2}^{2}$ is minimized if $\alpha_{i}=\frac{u_{i}^{T} b}{\sigma_{i}}$ for $i=1 . . r$. The elements α_{i} for $i=r+1 . . m$ are not important for the minimization. However if we set them to zero, we get the vector α which minimizes $\|A x-b\|_{2}^{2}$ on one hand, and has the smallest norm of all minimizers on the other. Since, $x=V \alpha$, and $\|x\|_{2}=\|V \alpha\|_{2}=\|\alpha\|_{2}$, the solution $x_{L S}$ shown in eq. (8) minimizes $\rho_{L S}=\|A x-b\|_{2}$, so that eq. (9) is satisfied, and has the smallest 2-norm of all minimizers of $\rho_{L S}$, which means that eq. (11) is as well satisfied. By setting the α_{i} 's computed above into eq. (15), we get the residual value appearing in eq. (10).

2 The Pseudoinverse matrix

2.1 Definition

Given the matrix A its pseudoinverse A^{+}is a matrix of dimensions $n \times m$, which amounts to:

$$
\begin{equation*}
A^{+}=V \Sigma^{+} U^{T} \tag{16}
\end{equation*}
$$

In the preceding equation, the matrix Σ^{+}is a diagonal matrix of the form:

$$
\begin{equation*}
\Sigma^{+}=\operatorname{diag}\left(\frac{1}{\sigma_{1}}, \frac{1}{\sigma_{2}}, . ., \frac{1}{\sigma_{r}}, 0, . ., 0\right) \in \mathbf{R}^{n \times m} \tag{17}
\end{equation*}
$$

If so, then:

$$
\begin{equation*}
A^{+} b=\left(V \Sigma^{+} U^{T}\right) b=\sum_{i=1}^{r} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}=x_{L S} \tag{18}
\end{equation*}
$$

2.2 Insight

Abbildung 1: Geometric interpretation of pseudoinverse functionality.

Let's suppose we are interested in solving the linear system (7).
To ease the illustration of the problem, we suppose that A is a 2×2 matrix. We also assume that $\operatorname{dim}(N(A))=1$. If X the vector space in which x belongs, and since $\operatorname{dim}(X)=$ $\operatorname{dim}(R(A))+\operatorname{dim}(N(A))$, we deduce that $\operatorname{dim}(R(A))=1$ for our example.
We suppose as well that Y is the vector space in which the vector y belongs. The twodimensional vector spaces X and Y are depicted in Fig. 1. The one-dimensional subspaces $N(A)$ and $R(A)$ of X and Y respectively are depicted as lines in the figure. Note that in the figure, $R(A)-$ and $N(A)-$, stand for $R(A)^{\perp}$ and $N(A)^{\perp}$ respectively.
For solving (7), we consider the following two cases:
$\mathbf{y}=\mathbf{d}$ and $\mathbf{d} \in \mathbf{R}(\mathbf{A}):$ The system has an infinite number of solutions. If x_{3} a solution to the system, then $x_{s}=x_{3}+x_{N}$, where $x_{N} \in N(A)$, is as well a solution. All those solutions belong to a one-dimensional translate of $N(A)$, illustrated by the line X_{s} in the
figure. This line passes through x_{3}, and is parallel to the line defined by $N(A)$. As implied by equations (18), (11), from all the solutions of the system, the solution delivered by the pseudoinverse $x_{4}=A^{+} d$ will be the one with the minimum norm, that is the minimum distance from the origin of the X space. The distance of x_{4} to the origin is minimized only if x_{4} belongs to the orthogonal space of $N(A)$, that is, $x_{4} \in N(A)^{\perp}$.

Note that since x_{3} a solution of $A x=d$, we have that $A x_{3}=d$. In addition, $x_{4}=A^{+} d$. Thereby, $x_{4}=A^{+} A x_{3}$. This means that the matrix $A^{+} A$, projects vectors of X-space to $N(A)^{\perp}$. This projection is orthogonal, since $N(A)^{\perp}$ is orthogonal to the X_{s} line.
$\mathbf{y}=\mathbf{b}$ and $\mathbf{b} \notin \mathbf{R}(\mathbf{A})$. In this case the system has no solution. However, as implied by equations (18), (9), the "solution" delivered by the pseudoinverse: $x_{1}=A^{+} b$, when mapped via A to the Y-space, gives a vector $c=A x_{1}$, on the $\mathrm{R}(\mathrm{A})$, so that the distance of c to b is minimized.

Since $c=A x_{1}$ and $x_{1}=A^{+} b$, we get $c=A A^{+} b$. Since the vector c is an element of $R(A)$ with the minimum distance to b, it is the orthogonal projection of b to $R(A)$. The matrix $A A^{+}$, defines therefore an orthogonal projection of a vector of the Y space to the $\mathrm{R}(\mathrm{A})$.

Note that in every case, the matrix A^{+}, takes vectors of the Y - space and brings them to vectors of $N(A)^{\perp}$. This implies that: $R\left(A^{+}\right)=N(A)^{\perp}$. Those vectors of $N(A)^{\perp}$, solve the system $A x=y_{R}$, where y_{R} the orthogonal projection of y to $\mathrm{R}(\mathrm{A})$ on one hand, and have minimum distance from the origin of the X - space on the other.

Lets consider now the case, where $A x=e, e \in R(A)^{\perp}$. The orthogonal projection of e to $R(A)$ is the null vector in this case. The vector which solves the system $A x=0$ with minimum norm is the null vector. In other words the pseudoinverse maps vectors of $R(A)^{\perp}$ to the null vector. That is : $N\left(A^{+}\right)=R(A)^{\perp}$.

Based on these observations, we could conclude the following regarding the properties of the pseudoinverse matrix:

2.3 Properties

1. $R\left(A^{+}\right)=N(A)^{\perp}$. Since $N(A)^{\perp}=R\left(A^{T}\right)$ (why?) we finally get: $\mathbf{R}\left(\mathbf{A}^{+}\right)=\mathbf{N}(\mathbf{A})^{\perp}=$ $\mathbf{R}\left(\mathbf{A}^{T}\right)$.
2. $N\left(A^{+}\right)=R(A)^{\perp}$. Since $R(A)^{\perp}=N\left(A^{T}\right)$ (why?) we finally get: $\mathbf{N}\left(\mathbf{A}^{+}\right)=\mathbf{R}(\mathbf{A})^{\perp}=$ $\mathbf{N}\left(\mathbf{A}^{T}\right)$.
3. $A^{+} A$, defines the orthogonal projection of an arbitrary vector of the X space to $N(A)^{\perp}$. This has the following consequences:
(a) $\left(\mathbf{A}^{+} \mathbf{A}\right)^{\mathbf{T}}=\mathbf{A}^{+} \mathbf{A}($ why? $)$
(b) The matrix $I-A^{+} A$ defines the orthogonal projection of the vector to $N(A)$.
(c) Since $I-A^{+} A \in N(A)$, we have: $A\left(I-A^{+} A\right)=0$, or $\mathbf{A A}^{+} \mathbf{A}=\mathbf{A}$.
4. $A A^{+}$, defines the orthogonal projection of an arbitrary vector of the Y-space to $\mathrm{R}(\mathrm{A})$. This has the following consequences:
(a) $\left(\mathbf{A A}^{+}\right)^{\mathbf{T}}=\mathbf{A} \mathbf{A}^{+}($why? $)$
(b) The matrix $I-A A^{+}$is the orthogonal projection of the vector to $R(A)^{\perp}$.
(c) We have already shown that: $R(A)^{\perp}=N\left(A^{+}\right)$. Thereby, $A^{+}\left(I-A A^{+}\right)=0$, or $\mathbf{A}^{+} \mathbf{A} \mathbf{A}^{+}=\mathbf{A}^{+}$.

3 Exercises

Based on what discussed in the previous sections show that:

1. $\left(A^{T}\right)^{+}=\left(A^{+}\right)^{T}$
2. $A^{++}=A$
3. $A^{T} A A^{+}=A^{T}$
4. $A^{+} A A^{T}=A^{+}$
5. If $r=n$ then $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$
6. If $r=m$ then $A^{+}=A^{T}\left(A A^{T}\right)^{-1}$

References:

[1] G. H. Golub and C. F. Van Loan Matrix Computations. John Hopkins University Press, 1989.
[2] W. Press, S. Teukolsky, W. Vetterling, B. Flannery. Numerical Recipes in C++ (The Art of Scientific Computing), Second Edition. Cambridge University Press, 2001.

