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Zusammenfassung

In dieser Diplomarbeit werden neue Verfahren zur Detektionund Klassifikation von Ob-
jekten in Mehrkanal 3D Aufnahmen vorgestellt. Für die Detektion von Objekten wurden
neue Bildfilterungsverfahren entwickelt, die es ermöglichen an Hand von Trainingsdaten
eine an das zu detektierende Objekt angepasste Bildfilterung durzuführen. Die entwick-
elten Bildfilterungsverfahren können auf beliebig vielen Kanälen eingesetzt werden. Um
in einem zweiten Schritt die detektierten Objekte zu verifizieren wurden bereits bewährte
Merkmale zur 3D Objectkerkennung auf 3D Mehrkanal Aufnahmen erweitert.

Die entwickelten Verfahren wurden erfolgreich auf Zellkulturen von kolorektalen Karzi-
nomen zur Detektion von aberranten Mitosen eingesetzt.

Abstract

The present diploma thesis introduces new approaches for the detection and classification
of objects in multi-channel 3D data sets. For the detection of objects new image filtering
techniques were developed. Based on given training data they allow for an image filtering
which is adapted to a specific object. The image filtering algorithms can be deployed on
an abitrary number of channels. To verify detected objects,established features for the
recognition of 3D objects were extended to multichannel 3D data sets.

The present methods were successfully used for the detection of aberrant mitoses in cell
cultures of colorectal carcinomas.
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1 Introduction

In our society cancer diagnosis are constantly increasing.Improved methods for detection
and quantification of individual cellular and genetic aberrations need to be fully established
as supplementary tool to classical histomorphological analysis. Automated three dimensional
imaging methods are expected significantly to improve today’s standards of histopathology
and molecular pathology. In particular, quantitative multi-parametric three dimensional as-
sessment of candidate molecular markers in the context of tumour cells within routinely pro-
cessed tissue specimens will be a crucial task to significantly improve prognostic and predic-
tive pathology.

For example the development and progression of colorectal cancer is determined by several
pathways of genetic instability, such as chromosomal instability, microsatellite instability and
a methylation-related instability. Alterations in these genetic pathways and mutations of spe-
cific genes within the evolving tumour cell population contribute to tumour cell invasion and
metastasis, and the aggressiveness of the disease. The molecular aspects of tumour cell biol-
ogy are of primary importance for individual patient prognosis and the therapeutic response
to current therapeutic strategies.

Figure 1.1: Overlay of FITC and DAPI channels of a colorectalcancer cell.

The main goal of the current work was to detect and classify mitotic cells in tissue samples
of colorectal cancer. Therefore we will introduce new techniques in the area of multi-channel
image (see figure 1.1) filtering and feature extraction methods.

Detection of objects in images is one of the fundamental tasks of image processing. How-
ever, the variety of objects and image acquisition parameters makes this process not trivial.
There are many types of filter based feature detectors for lines and corners [FY91] [AJU05]
[YLZW06] but only very few have the ability to learn the objects of interest in a generic way
[SMH98] [Rei09]. Many approaches are model based such as theHough transform and in-
volve a previous segmentation of objects [RWB08][SSR+06]. For multi-channel images most
algorithms are only addressed to 2d problems [Cyg05].
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2 Introduction

1.1 Outline

This work is organised as the following.

Chapter 2 will give brief introduction on the biological andmedical background.

In chapter 3 we will give the theoretical background needed to understand most concepts of
the following chapters.

Chapter 4 introduces the concept of harmonic filters. We willextend the concept to multi-
channel data.

Chapter 5 gives a brief introduction on the theory of steerable filters in 3D. Since steerable
filter are a state of the art concept in image filtering in many object and feature detection tasks,
this was the main reference for our techniques developed in chapter 4.

In chapter 6 we will discuss various feature extraction methods with regard to multi-channel
data.

In chapter 7 we will present the results of our experiments.

And finally chapter 8 will complete the current work by summarising and discussing the in-
troduced concepts and giving an outlook on how to solve outstanding problems.



2 Biological Background

In this chapter we want to present a brief overview of the biological background needed to
understand the purpose of the presented work. First, we willoutline the cell division cycle in
order to understand what the main biomedical interest of ourwork is. This will be presented
regarding healthy cells. Furthermore, we give a brief description of aberrant cells in section 2.2
on page 5, which we later want to distinguish from healthy cells. Cell division requires the in-
teraction of a multitude of proteins, regulating entry intothe individual phases of the cell cycle
(see figure 2). In particular, protein kinases transfering phosphate groups from one protein to
another, and thereby leading to their activation, are essential for proper cell cycle progression.
Recently the Aurora-family of kinases have been identified to play a major role in the cell
cycle.
Three Aurora kinases have been identified: Aurora A (also known as STK15), Aurora B and
Aurora C. Coordinate events for the positioning of the two spindle poles and the alignment
of chromatids are regulated via Aurora A and Aurora B kinases, respectively. Clearly, distur-
bance of these coordinate events will lead to cell cycle disturbances and may be involved in
development of chromosomal unstable cells, as seen in malignant transformation and several
cancer entities.
Since the main research interest of our project partners is Aurora A, we will neglect other
Aurora kinases and focus on Aurora A.
Aurora A is working during prophase (see figure 2.1 on the nextpage) and is required for the
correct function of the centrosomes which serve as the main microtubule organising centre.

Figure 2.1: Prophase of a cell.

During the prophase of mitosis, the centrosomes migrate to opposite poles of the cell. The
mitotic spindle then forms between the two centrosomes. Upon division, each daughter cell

3



4 Biological Background

receives one centrosome. Aberrant numbers of centrosomes in a cell have been associated with
cancer.

2.1 Cell Division and the Cell Cycle

The process of mitosis can be divided into six phases as depicted in figure 2.1. These six stages
are known as prophase, prometaphase, metaphase, anaphase,telophase and cytokinesis.

Figure 2.2: Overview of the cell cycle.

During mitosis, a mitotic spindle is assembled by using microtubules to tether together the
mother centrosome to its daughter. The resulting mitotic spindle is then used to propel apart
the sister chromosomes into what will become the two new daughter cells.
Aurora A is critical for proper formation of the mitotic spindle. It is required for the recruit-
ment and activation of several different proteins important to the spindle formation. Without
Aurora A the centrosome does not accumulate the quantity ofγ-tubulin that normal centro-
somes recruit prior to entering anaphase. Finally, Aurora Ahelps to orchestrate an exit from
mitosis by contributing to the completion of cytokinesis- the process by which the cytoplasm
of the parent cell is split into two daughter cells. During cytokinesis the mother centriole
returns to the mid-body of the mitotic cell at the end of mitosis and causes the central micro-
tubules to release from the mid-body. The release allows mitosis to run to completion.
Furthermore, Aurora A is also involved in the dynamics of centrosome maturation and their
migration to form two opposite located spindle poles.
Aberrant high expression of Aurora A has been associated with supernumerary centrosomes
and multipolar spindle poles during cell division of cancercells. High levels of Aurora A have
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(a) prophase (b) prometaphase

(c) metaphase (d) anaphase

(e) telophase (f) cytokinesis

Figure 2.3: Six different cell division stages.

been observed in colorectal cancers, especially in those molecular subgroups of colorectal
cancers that display chromosomal instability (see [GKW+06],[LWM+07]and [LKS+09]).

2.2 Cancer Cells and Aberrant Mitosis

Aurora A dysregulation has been associated with a high occurrence of cancer. Dysregulation of
Aurora A may lead to cancer because Aurora A is required for the completion of cytokinesis.
If the cell begins mitosis, it duplicates its DNA, but is thennot able to divide into two separate
cells, it becomes an aneuploid and contains more chromosomes than normal. Figure 2.4 on
the next page shows a few examples of aberrant mitosis cells.More examples can be found in
appendix D.1 on page 82.
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HT29

HCT116

DLD1

Figure 2.4: Examples of highly aberrant mitotic cells of three different identified cancer types.

2.3 Cell Lines

Cell lines are distinct families of cells grown in culture. Cells in the same line are typically
clones. Different cell lines have different features which are useful in molecular biological
applications. We used images of the following three cell lines (seehttp://www.biotech.
ist.unige.it).

• HCT 116:

Morphology: Epithelial-like

Species: human male

Tissue: colon

Tumour: carcinoma

Depositor: obtained from ATCC Properties: expressing xenobiotic metabolising en-
zymes; producing carcinoembryonic antigen

• DLD-1:

Morphology: Epithelial Human colon adenocarcinoma

Depositor: Obtained from ATCC, USA

Derived from human colorectal adenocarcinoma. The cells have been used in the
study of polar solvents on cell characteristics.

• HT 29:

Morphology: Epithelial

Human Caucasian colon adenocarcinoma grade II
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Isolated from a primary tumour in a 44 year old Caucasian female. Forms a well-
differentiated adenocarcinoma consistent with colony primary, grade I. Tumours also
form in steroid treated hamsters.





3 Preliminaries

This chapter presents the theoretical background needed tounderstand the following chapters.
Until a few exceptions we passed on most of the proofs or referred to its source. Most of the
definitions and theorems where invented in [RB09] and [Rei09] and the interested reader is
referred to these sources.

We will begin with a very basic definition.

Definition 3.0.1 (Equivariant Mapping). A mapping f between two set X and Y is called
equivariant if f commutes with the group action of a given groupG.

f (g · x) = g · f (x), ∀g ∈ G and x∈ X

Or in other words, f is an equivariant mapping if the following diagram commutes for every
g ∈ G:

X
g·

//

f
��

X

f
��

Y g·
// Y

g· : G × X→ X, (g, x) 7→ gx denotes the group action ofG on X (for Y respectively).

We will later need the following vector space definition.

Definition 3.0.2(The vector spaceV j). We define Vj as the complex2 j +1 dimensional vector
space represented byC2 j+1. The standard basis of Vj is written asej

m for m= − j, . . . , j.

Elements ofV j are written in bold face, e.g.v ∈ V j, and the 2j + 1 components ofv in unbold
facevm ∈ C, wherem = − j, . . . , j. We treatV j as a real vector space of dimension 2j + 1,
despite the fact that the components ofv might be complex. This means thatV j is only closed
under weighted superpositions of real numbers. Therefore,components ofu ∈ V j fulfil the
propertyum = (−1)mu−m. The corresponding ”imaginary” space is denoted asiV j. We write
the elementsw ∈ iV j asw = iv, whereasv ∈ V j. Analogue to elements ofV j, the elements
w ∈ iV j fulfil always wm = (−1)m+1w−m. Hence the wholeC2 j+1 can be written as the direct
sum of these two spacesC2 j+1 = V j ⊕ iV j.
Let r = (x, y, z)T ∈ R3 be the standard coordinate vector. One can relater to the complex
valued spherical coordinateu ∈ V1 in an unitary way:

u =



1√
2
(x− iy)

z
− 1√

2
(x+ iy)


=



w
z
−w


= Sr ∈ V1 ,

9



10 Preliminaries

whereasw = x+ iy. S is an unitary coordinate transformation given by the matrix

S=
1
√

2



1 −i 0
0 0

√
2

−1 −i 0


(3.1)

3.1 Irreducible Representations of Elements of SO(3)

The representation of a groupG is a mapping of the elementsg ∈ G onto a set of matricesD(g)
of dimensiond, such that the product rule still holds (group homomorphism):

D(g1g2) = D(g1)D(g2) .

We will need the definition of irreducible representations of elements ofSO(3).

Definition 3.1.1(Wigner D-matrices and the vector spaceV j). Let D j
g be the irreducible rep-

resentation of elements g∈ SO(3) that act on the vector space Vj . The representationsD j
g are

unitary
(D j

g)
TD j

g = I

TheD j
g are called the Wigner D-matrix. The components ofD j

g are writtenD j
mn.

The relation betweenD1
g and the real valued rotation matrixUg ∈ R3×3 is given by

D1
g = SUgST

for Saccording to equation (3.1).

3.2 Spherical Tensor Analysis

In this section we will give all basic definition and theoremswhich are essential for spherical
tensor analysis.

Definition 3.2.1 (Spherical Tensor Field). We call a functionf : R3 → V j a spherical tensor
field of rank j if it transforms with respect to rotations as

(
g · f

)
(r ) := D j

gf
(
UT

g r
)

(3.2)

for all g ∈ SO(3). The space of all spherical tensor fields of rank j is denoted asT j.

The next definition will give us a basic tool for combining tensors of different ranks.

Definition 3.2.2(Spherical Tensor Coupling). For j ≥ 0 we define a family of bilinear forms
of type

◦ j : V j1 × V j2 → V j
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whereas j1, j2 ∈ N have to be chosen according the triangle inequality

| j1 − j2| ≤ j ≤ j1 + j2 (3.3)

For v ∈ V j1 andw ∈ V j2, v ◦ j w is defined by

(ej
m)T(v ◦ j w) =

∑

m=m1+m2

〈 jm | j1m1, j2m2〉vm1wm2

whereas〈 jm | j1m1, j2m2〉 are the Clebsch-Gordan coefficients.

This is just the ordinary angular momentum coupling known inquantum mechanics (see
[Ros95] and [Tin04]). Note that the Clebsch-Gordan coefficients〈 jm | j1m1, j2m2〉 are only
non zero form= m1 +m2. The most important and useful property of the above defined prod-
ucts is that they respect the rotations of their arguments. We will make use of this property in
the following chapters. The following proposition will make this clear.

Proposition 3.2.1.Let j1, j2, j ∈ N be chosen according to the triangle inequality (3.2). For
anyv ∈ V j1 andw ∈ V j2 and g∈ SO(3) holds

(
D j1

g v
)
◦ j

(
D j2

g w
)
= D j

g

(
v ◦ j w

)

Proof. See [RB09] and [Rei07] �

We will present some other useful properties of the productsdefined by definition 3.2.2.

Proposition 3.2.2. Let j1, j2, j ∈ N be chosen according to the triangle inequality (3.2). If
j + j1 + j2 is even, then◦ j is symmetric and antisymmetric otherwise. The space Vj is closed
under symmetric products but not for antisymmetric products. Then we have forv ∈ V j1 and
w ∈ V j2

j + j1 + j2 is even⇒ v ◦ j w ∈ V j

j + j1 + j2 is odd⇒ v ◦ j w ∈ iV j

Proof. See [RB09] and [Rei07] �

Definition 3.2.3 (Normalised Symmetric Products). For j ≥ 0, | j1 − j2| ≤ j ≤ j1 + j2 and
j + j1 + j2 even, we define a family of symmetric bilinear forms• j : V j1 × V j2 → V j by

v • j w :=
1

〈 j 0 | j10, j20〉
v ◦ j w

Note that〈 j0 | j10, j20〉 are only non zero forj + j1 + j2 = even.
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There are some special cases which we will now summarise.

For•0 the arguments have to be of the same rank in order to fulfil the triangle inequality, e.g.
v,w ∈ Vk. In this case• coincides with the standard inner product:

v •0 w =
∑

m=−k,...,k

(−1)mvmw−m = wTv .

For j = j2 and j1 = 0, e.g.v ∈ V0 andw ∈ V j, • reduces to the standard scalar multiplication:

v • j w = v0w .

The following has found to be very useful in the context of multi-channel image filters.
For j = j1 = j2 = 1 andv = Sb, w = Sc∈ V1 andb, c ∈ R3 it holds

−i(v ◦1 w) =
1
√

2
S
(
b × c

)
(3.4)

× denotes the cross product.

Proof.

−i(v ◦1 w) = −i



∑
−1=m1+m2

〈1− 1 | 1m1, 1m2〉vm1wm2∑
0=m1+m2

〈10 | 1m1, 1m2〉vm1wm2∑
1=m1+m2

〈11 | 1m1, 1m2〉vm1wm2



= −i



〈1− 1 | 1− 1, 10〉v−1w0 + 〈1− 1 | 10, 1− 1〉v0w−1

〈10 | 1− 1, 11〉v−1w1 + 〈10 | 11, 1− 1〉v1w−1

〈11 | 10, 11〉v0w1 + 〈10 | 11, 10〉v1w0



= −i



− 1√
2
v−1w0 +

1√
2
v0w−1

− 1√
2
v−1w1 +

1√
2
v1w−1

− 1√
2
v0w1 +

1√
2
v1w0



= − i
√

2



1√
2
((−bx + iby)cz + bz(cx − icy))

1
2((−bx + iby)(−cx − icy) + (−bx − iby)(cx − icy))

1√
2
(−bz(−cx − icy) + (−bx − iby)cz)



= − i
√

2



1√
2
((bzcx − bxcz) + i(bycz− bzcy))

i(bxcy − bycx)
1√
2
((−bxcz+ bzcx) + i(−bycz + bzcy))



=
1
2



(bycz − bzcy) − i(bzcx − bxcz)√
2(bxcy − bycx)

−(bzcy − bycz) − i(bzcx − bxcz)



=
1
√

2
S



bycz− bzcy

bzcx − bxcz

bxcy − bycx



=
1
√

2
S (b × c)
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�

The previously introduced products are giving us the ability to not only coupling tensors of
different, but also coupling tensor fields of different ranks.

Proposition 3.2.3.Letv ∈ T j1 andw ∈ T j2 and j ∈ N be chosen such that
∣∣∣ j1 − j2

∣∣∣ ≤ j ≤ j1+ j2
then

f (r ) := v(r ) ◦ j w(r )

defines a tensor field of rank j, i.e.f ∈ T j

Proof. Since we havev(r ) ∈ V j1 andw(r ) ∈ V j2, we know that (v(r ) ◦ j w(r )) ∈ V j. Since
this holds for allr ∈ R3 and the properties of◦ j, we have that (v ◦ j w) : R3 → T j1 defines a
spherical tensor field. �

Tensor fields can also be combined by convolution, which the next proposition will show.
The advantage of combining tensor fields by convolution is, that the so defined ”convolution”
products also respect translation in a certain sense.

Proposition 3.2.4.Let v ∈ T j1 andw ∈ T j2 and j be chosen such that| j1 − j2| ≤ j ≤ j1 + j2,
then

(ṽ◦jw)(r ) :=
∫

R3
v(r ′ − r ) ◦j w(r ′) dr ′

is in T j, i.e. a tensor field of rank j.

Considering the behaviour of◦j and◦̃j under a translationτ

(τf )(r ) := f (r − tτ) ,

leads to the following two relations:

(τv) ◦j (τw) = τ(v ◦j w) (3.5)

ṽ◦j(τw) = (τv)̃◦jw = τ(ṽ◦jw) (3.6)

3.3 Spherical and Solid Harmonics

We denote the spherical harmonics by

Y j : S2→ V j .

We writeY j(r ), wherer may be an element ofR3, althoughY j(r ) is independent of the mag-
nitude ofr . This has the advantage that we can interpret them as spherical tensor field.

We know that theY j provide an orthogonal basis of scalar functions on the 2-sphereS2. Thus,
any real scalar fieldf ∈ T0 can be expanded in terms of spherical harmonics in a unique
manner. One important and useful property is thatY j = Y j1 •j Y j2. We can use this formula
to iteratively compute higher orderY j from given lower order ones. Note thatY0 = 1 and
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Y1 = Sr, wherer ∈ S2.
Another important property that eachY j, interpreted as a tensor field of rankj is a fix-point
with respect to rotations, i.e.

(gY j)(r ) = Y j(r ), for all g ∈ SO(3) (3.7)

or in other words:Y j(Ugr ) = D j
gY j(r ).

The spherical harmonics naturally arise from the solutionsfrom the Laplace equation as the
so called solid harmonics

R j(r ) := r jY j(r )

The generalisationR j
i (r ) := r j+iY j−i(r ) is a complete basis for the analytical functionsL2(R3).

Note that the fix point property also holds for the solid harmonics.

3.4 Spherical Derivatives

We will later need the concept of spherical derivatives for the harmonic filter framework.

Proposition 3.4.1(Spherical Derivatives). Let f ∈ T j be a tensor field. The spherical up-
derivative∇1 : T j → T j+1 and the down-derivative∇1 : T j → T j−1 are defined as

∇
1f := ∇ •j+1 f (3.8)

∇1f := ∇ •j−1 f , (3.9)

where

∇ = (
1
√

2
(∂x − i∂y), ∂z,−

1
√

2
(∂x + i∂y))

is the spherical gradient and∂x, ∂y, ∂z the standard partial derivatives.

Proof. We have to show that∇1f ∈ T j+1, i.e.

∇
1(D j

gf (U
T
g r )) = D j+1

g (∇1f )(UT
g r )

and∇1f ∈ T j−1

∇1(D j
gf (U

T
g r )) = D j−1

g (∇1f )(UT
g r )

Both statements are proved just by using the properties of•. �

Note. For f ∈ T0 the spherical up-derivative is just the spherical gradient∇f = ∇1f . A con-
secutive application of up- and down-derivatives forf ∈ T0 is equivalent with applying the
Laplace operator:

∇1∇
1f = ∆f

In the Fourier domain the spherical derivatives act by point-wise•-multiplications with a solid
harmonicikY1(k) = iR1(k) = iSk wherek = ‖k‖ denotes the frequency magnitude:



3.4 Spherical Derivatives 15

Proposition 3.4.2(Fourier Representation). Let̃f (k) be the Fourier transformation of somef ∈
Tℓ and∇̃ representations of the spherical derivative in the Fourierdomain that are implicitly
defined by(̃∇f ) = ∇̃̃f , then

∇̃
1
f̃ (k) = iR1(k) •ℓ+1 f̃ (k) (3.10)

∇̃1̃f (k) = iR1(k) •ℓ−1 f̃ (k). (3.11)

Proof. By using the ordinary Fourier correspondence of the partialderivative,∂̃xf = ikx̃f , we
can verify for the spherical gradient∇ that

∇̃ = iSk = iR1(k)

and hence
∇̃

1f = ˜(∇ •ℓ+1 f ) = ∇̃ •ℓ+1 f̃ = iR1(k) •ℓ+1 f̃

which was to be shown (see [Rei07]). �

Equation (3.10) and (3.11) are direct consequences of the Fourier correspondences for the or-
dinary partial derivatives.

The generalisation higher orders is only true for scalar fields and is presented by the next
proposition.

Proposition 3.4.3(Multiple Spherical Derivatives). For n ≥ i we define∇n
i : T0 → Tn−i by

∇
n
i := ∇i∇

n := ∇1 . . .∇1︸    ︷︷    ︸
i−times

∇
1 . . .∇1

︸    ︷︷    ︸
n−times

.

In the Fourier domain these multiple derivatives act by

(∇̃
n

i f̃ )(k) = (i)n+i Rn
i (k) f̃ (k). (3.12)

Using this one can show that∇n
i = ∇

n−i∆i, where∆ is the Laplace operator.

Proof. See [Rei07] �

We will later need the following commuting property for convolutions.

Proposition 3.4.4(Commuting Property for Convolutions). Let A ∈ Tk andB ∈ T j be arbi-
trary spherical tensor fields then

(∇ℓA) •̃J B = A •̃J(∇ℓB) (3.13)

(∇ℓA) •̃L B = A •̃L(∇ℓB) (3.14)

where J= j − (ℓ + k) and L= j + ℓ + k.

Proof. See [RB09] �
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3.5 Spherical Gaussian Derivatives

This section summarises the most important relations of spherical derivatives Gaussian func-
tions.

Proposition 3.5.1.The Gaussian windowed harmonic of widthσ is defined as

G j
σ(r ) :=

1
σ3

(
−r
σ2

) j

Y j(r )e−
r2

2σ2 ,

then, the Fourier transformation ofG j(r ) is given by

Ṽ j
σ(k) = 〈eikT r ,G j(r )〉L2 = (ik) jY j(k)e−

(σk)2

2 .

The following corollary will show that theG j are just thej-th order spherical derivatives of a
Gaussian.

Corollary 3.5.1 (Homogenous Spherical Gaussian Derivative). The homogeneous spherical
derivative∇ j of a Gaussian is given by

∇
je−

r2

2σ2 = σ3G j
σ(r ) =

(
− 1
σ2

) j

R j(r ) e−
r2

2σ2

We use the conventionG0
σ = Gσ =

1
(
√

2πσ)3 e−
r2

2σ2 .

This also implies that for smallσ the inner products with suchG j
σ tend towards the derivative,

meaning

(−1)j〈G j
σ, f 〉L2

σ→0−→
(
∇

j f
)
|r=0

for some f ∈ T0. Another implication is that convolutions with theG j
σ are derivatives of

smoothed functions

Corollary 3.5.2 (Smooth Derivatives). Let f ∈ T0 be a scalar-valued tensor field, then it holds

G j
σ ∗ f = ∇ j fs,

where fs = Gσ ∗ f = 1
σ3 e−

r2

2σ2 ∗ f is the Gaussian-smoothed tensor field.

Proof. Using associativity and commutativity of convolutions, then in the Fourier domain
holds:

G̃ j
σ1

f̃ =

(
(ik) jY j(k)e−

(σk)2

2

)
f̃

= (ik) jY j(k) •j

(
e−

(σk)2

2 f̃

)

︸    ︷︷    ︸
f̃s

= ∇̃
j
f̃s.

Which proves the assertion. �



4 Tensor Voting and Harmonic Filters

This chapter introduces the theory ofSE(3)-equivariant non-linear filters for generic feature
and object detection [Rei09]. The goal is to build non-linear image filters that are equivariant
to Euclidean motion. It is in principle the 3D analogy to the filter developed in [RB08] for the
2D case.
In section 4.1 we will give some basic definitions and give an introduction to the harmonic
filter as developed in [Rei09]. Section 4.2 on page 19 will give an alternative formulation of
the harmonic filter based on spherical derivatives (see 3.4 on page 14) that will lead to a fast
implementation. In section 4.4 on page 24 we will give an extension to the harmonic filter
that makes it possible to use higher order tensor fields as input to the filter. In section 4.5
on page 25 we will show how to extend harmonic filters to multi-channel input, and finally
in section 4.6 on page 27 we will show how to extend the filter algorithm by making use of
antisymmetric tensor products.

4.1 Harmonic Filters

Let us begin with the definition of aSE(3)-equivariant image filter.

Definition 4.1.1 (SE(3)-Equivariant Image Filter). An image filterF is a mapping fromT j1

ontoT j2. Such a mapping is calledSE(3)-equivariant ifF{g f} = gF{ f } for all g ∈ S E(3) and
f ∈ T j1.

In case of the harmonic filter we will focus on tensor fieldsf ∈ T0 (scalar fields) and elements
of T1 (vector fields, see section 4.4 on page 24). Hence we will givea specialised definition
of 4.1.1.

Definition 4.1.2(SE(3)-Equivariant Scalar Image Filter). A scalar image filterF is a mapping
from T0 onto T0. Such a mapping is calledSE(3)-equivariant ifF{g f} = gF{ f } for all g ∈
S E(3) and f ∈ T0.

The harmonic filter algorithm can be divided up into three steps:

First, compute for each position in the 3D space the projection onto the Gaussian windowed
harmonic basisG j

σ for j = 0, . . . , n. This is achieved by calculating the convolution of the
image f with the harmonic basis

p j := G j
σ ∗ f (4.1)

The set of projectionsp j can be interpreted as a kind of local descriptor images, where the
set of [p0(r ), p1(r ), . . . , pn(r )] of coefficients describe the harmonic part of the neighbourhood

17
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of the voxelr . Note that the resulting projectionsp j are elements ofT j and as a consequence
p j(r ) ∈ V j.

Secondly, for each voxel these projections are mapped onto some new harmonic descriptors

N j(r ) := N j[p0(r ), p1(r ), . . . , pn(r )] (4.2)

which can be interpreted as a local expansion of a kind of voting function that contributes
into the neighbourhood ofr . The voting function is chosen as a Gaussian-windowed harmonic
function (see [Rei09]) and therefore the contribution of the voter at voxelr ′ to positionr is :

Vr ′(r ) = Gη(r − r ′)
∞∑

j=0

(N j(r ′))TR j(r − r ′)

= Gη(r − r ′)
∞∑

j=0

N j(r ′) •0 R j(r − r ′) . (4.3)

The third and final step is to collect the contribution from all pixels r ′ in an additive way

F{ f }(r ) :=
∫

R3
Vr ′(r )dr ′

=

n∑

j=0

∫

R3
Gη(r − r ′)(N j(r ′) •0 R j(r − r ′))

=

n∑

j=0

∫

R3
G j
η(r − r ′) •0 N j(r ′)

=

n∑

j=0

G j
η •̃0 N j . (4.4)

Before we go into further details, we have to show that a filterdefined by equation (4.4)
is a filter in the sense of definition 4.1.1 on the previous page. In order to ensureSE(3)-
equivariance,N j[·] has to fulfil the following definition:

Definition 4.1.3 (SE(3) equivariant mapping). A mappingN j : V0 × · · · × Vn → V j is called
equivariant if it behaves as

N j
[
D0

gp
0, . . . ,Dn

gp
n
]
= D j

gN
j
[
p0, . . . , pn

]

It is obvious that shiftingf by τ results in shifted descriptorsp j

G j
σ ∗ (τ f ) = τ(G j

σ ∗ f ) = τ p j

SinceN j is working in a point-wise manner it holds for any translation:

N j[τp0, . . . , τp j] = τN j[p0, . . . , p j]
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And finally, reconsidering equation (3.6) leads to the following

G j
η •̃0 (τN j) = τ(G j

η •̃0 N j)

and proves the translation-equivariance.
We know from section 3.5 on page 16 thatG j

η are fix points with respect to rotations. The
descriptor imagesp j are spherical tensor fields of orderj, because we have

G j
σ ∗ (g f) = g(G j

σ ∗ f )

Hence,N j[p0, . . . , p j] is also a spherical tensor field of orderj.
Finally, using the fix point property ofG j

η and proposition 3.2.4 on page 13, we have that
F{ f } ∈ T0 which proves the rotation-equivariance.

4.2 Differential Formulation of the Voting Function

We will use the spherical product• as the basic building block for the equivariant non-
linearitiesN j[·]. We define the non-linear voting functionN j[·] as the sum of second order
descriptor imagesp j

N j
[
p0, . . . , pn

]
:=

∑

| j1− j2|≤ j≤ j1+ j2
j1+ j2+ j even

j1, j2≤n

α
j
j1, j2

p j1 • j p j2 (4.5)

whereα j
j1, j2
∈ R are expansion coefficients. The order of the filter is defined as the order of

product involved inN j[·] and is denoted byN. The computational most expensive parts of the
filter given by equation (4.4) are the convolutions. On the one hand, one has to compute the
projection onto the harmonic basis of the input image by convolution. On the other hand, the
final collection step of all voters is done by convolution.
Reconsidering corollary 3.5.2 on page 16 shows that there isanother way to compute projec-
tions onto the harmonic basis: by the use of the spherical derivative (see 3.4 on page 14).

Furthermore, we know from the commuting property for convolutions (see proposition 3.13
on page 15) that

n∑

j=0

G j
η •̃0 N j =

n∑

j=0

(∇ jGη) •̃0 N j

=

n∑

j=0

Gη •̃0 (∇ jN j)

= Gη ∗
n∑

j=0

∇ jN j
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We can reformulate the filter of equation (4.4) and give the final definition of the Harmonic
Filter:

H{ f } := Gη ∗
n∑

j=0

∇ jN j[∇0 fs, . . . ,∇
n fs] (4.6)

with fs = Gσ ∗ f as in corollary 3.5.2 on page 16.

Algorithm 1 gives the computation of the filter in pseudo codenotation. Note, that we just
have to computen spherical derivatives∇1 if we implement them by repeated applications
(see proposition 3.4.3 on page 15 for details). Actually thesame holds for the down-derivative
∇1 if we follow Algorithm 1. In Figure 4.1 on the next page we illustrate the workflow of the
filter.

Algorithm 1 Harmonic Filter Algorithm

Input: f : R3 → R
Output: y : R3 → R, y := H{ f }

1: Initialiseyn := 0 ∈ Tn

// compute projection onto harmonic basis
2: Convolvep0 := Gσ ∗ f
3: for j = 1 : n do
4: p j = ∇1p j−1

5: end for
// compute harmonic descriptors

6: for j = n : −1 : 1 do

7: y j−1 = ∇1

(
y j + N j

[
p0, . . . , p j

])

8: end for
9: Let y := y0 + N0

[
p0, . . . , p j

]

// collect the contribution of all voters
10: Convolvey := Gη ∗ y

Depending on the application they may or may not depend on theabsolute intensity values
of the input image. To become invariant against additive intensity changes one leaves out the
zero order descriptorp0.
For robustness against illumination/contrast changes we introduce a soft normalisation of the
first order descriptorp1:

p1(r ) =
1

γ + sdev(r )
∇

1 f (r ), (4.7)

whereγ ∈ R is a fixed regularisation parameter andsdev(r ) denotes the standard deviation
computed in a local window aroundr . The normalisation makes the filter robust against mul-
tiplicative changes of gray values. The filter has three other parameters: the expansion degree
N, the width of the input Gaussianσ and the output Gaussianη.
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Figure 4.1: Workflow of the harmonic filter algorithm.

The parameterσ determines the size of the local features that vote for the centre of the object
of interest. To assure that every pixel of the object can contribute to the output, the extentη of
the voting function should be at least half the diameter of the object.
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4.3 Training: Finding Optimal Filter Parameters

In order to find the filter coefficientsα, we follow a linear least square fit. Suppose we want to
train the filter for one input imagef ∈ T0, then we have to minimise the following expression

J(α) = ‖L − H{ f }‖2

whereL is our label image, which contains ones at positions where wewant high response of
our filter, and zeros otherwise. Suppose our input image is given by its matrix representation
f ∈ Rm1×m2×m3. We write thek-th computed feature in algorithm 1 on page 20 as

fk = vec
(
Gη ∗ ∇ℓ ( pm •ℓ p j )

)
∈ Rm1·m2·m3

whereFk is k-th computed feature in algorithm 1 on page 20 written as vector. Assuming that
we calculaten feature images, we can define the matrix

F =
(
f1, . . . , fn

)
∈ R(m1·m2·m3)×n

Then we have thatvec
(
H{ f }

)
=

∑
k αkfk and optimise the following expression

J(α) = ‖vec
(
L
)
− vec

(
H{ f }

)
‖2

= ‖vec
(
L
)
−

∑

k

αkfk‖2

The optimalα values arise from solving the normal equations:

α = (FTF)(−1)FTvec
(
L
)
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Algorithm 2 Harmonic Filter Algorithm (Training)

Input: fi : R3→ R, i = 1, . . . ,M, training examples
Input: Li : R3 → {0, 1}, i = 1, . . . ,M, corresponding label images
Input: (m, j, ℓ) ∈ N3, tuple list of wanted products
Output: α ∈ RN, filter coefficients (N = #tuples in product list)

1: InitialiseF := {}
2: InitialiseL := {}
// compute projection onto harmonic basis

3: for i = 1 : M do
4: Convolvepi

0 := Gσ ∗ fi
5: for j = 1 : n do
6: pi

j = ∇1pi
j−1

7: end for
// compute local descriptors and collect

8: for all (m, j, ℓ) ∈ productsdo
9: fk = Gη ∗ ∇ℓ ( pm

i •ℓ p j
i )

10: F := {F, vec(fk)}
11: L := {L , vec(Li)}
12: k := k+ 1
13: end for
14: end for
// linear least square fit

15: Let C := FT F
16: Let b := FT vec(L )
17: SolveC α = b
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4.4 Higher Order Tensor Fields

In this section we want to examine generalisations of the harmonic filter to higher order tensor
fields for input as well as output. We will give an applicationfor higher order input at the end
of the current section.

The generalisation to tensor-valued input and output is indeed very simple. One has to con-
struct a filter of typeF : T j1 → T j2 in the sense of definition 4.1.1 on page 17. According
to the formulation we gave in section 4.2 on page 19 in order tocompute the projection onto
the harmonic basis, we can compute the descriptor images fora higher order inputf ∈ T j1 as
before byp j = ∇ j(Gσ ∗ f ). The difference is that the resulting descriptor images have higher
orders:p j ∈ T j+ j1.

We also have to adjust the local non-linear mappingsN j[·] to

N j : To+ j1 × · · · × Tn+ j1 → T j+ j1

Actually, we can use the same formulation as in equation (4.6) to map the local non-linearities
onto the output.

For getting higher order output one has to stop the loop in line 6 of algorithm 1 on page 20
at the desired output order. It is clear that only products•j of order j ≥ j1 can be computed,
when j1 is the desired output order. One also has to have in mind, thatthe training gets even
more complicated: one has to give higher order label images in training. A possible applica-
tion of higher order output, e.g. for a filter of typeF : T j1 → T1, could the prediction of local
orientations, e.g. the orientation axis of the centrosomesof a (healthy) mitosis cell.

As mentioned above we will give an application of a filter of typeF : T1→ T0, which we will
define as the following:

Definition 4.4.1 (SE(3)-Equivariant Vectorial Image Filter). A vectorial image filterF is a
mapping fromT1 ontoT0. Such a mapping is calledSE(3)-equivariant ifF{g f} = gF{ f } for
all g ∈ S E(3) and f ∈ T1.

We used the gradient vector flow field ([XP97] and [XP98]) of a scalar-valued function in
order to construct an rank-1 tensor field. Given a scalarf : R3 → R, the gradient vector flow
field is defined as the vector fieldv : R3 → R3 that minimises the energy functional

E =
∫

R3
µ ∆v(r ) + ‖∇ f (r )‖2‖v(r ) − ∇ f (r )‖2 dr . (4.8)

Due to the variational formulation, the resulting field getssmooth when there is no data. Oth-
erwise when‖∇ f ‖ is large, thenv tends to∇ f . The parameterµ is a regularisation parameter
and should be set according to the amount of noise presented in the image (see [XP98] for
details).

After computing the gradient vector flow we applied the vectorial image filter to the resulting
field.
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4.5 Tensor Fields of Multi-Channel Data

In this section we will give an approach on how to include multi-channel data into the frame-
work of equivariant image filtering. Figure 4.5 shows a humanmitosis cell.

Figure 4.2: Example of a multi-channel image.

By treating each channel as separate scalar-valued function fi : R3 → R and i = 1, . . . , k,
whenk ∈ N denotes the number of channels, we can easily integrate thisin our framework.
It is obvious that we can apply all the previously discussed filters to each channel separately.
But even more important is, that we can combine them by using the same products as before.

The only thing we have to do is, extend the non-linear mappingN j[·] of the previous sections
to multiple input.

We will doing this by exemplary fork = 2 channels and give one possible formulation of a
non-linear mappingN j.

Definition 4.5.1. Let f1, f2 ∈ Tℓ and letp0
1, . . . , p

n
1 and p0

2, . . . , p
n
2 be their expansion in the

harmonic basis. We defineN j
Multi as

N j
Multi

[
p0

1, . . . , p
n
1, p

0
2, . . . , p

n
2

]
:=

∑

| j1− j2|≤ j≤ j1+ j2
j1+ j2+ j even

j1, j2≤n

α
j
j1, j2

p j1
1 • j p j2

2 (4.9)

whereα j
j1, j2
∈ R are expansion coefficients.

Since we know that eachpm
1 , p

m
2 ∈ Tm+ℓ for m = 0, . . . , n and knowing the properties of• j

it is obvious that equation (4.9) defines anSE(3)-equivariant mapping in the sense of defini-
tion 4.1.3 on page 18. A possible workflow of the filter is depicted in figure 4.3 on page 27.

Algorithm 3 on the following page gives a possible realisation of anSE(3)-equivariant multi-
channel (scalar) image filter. The given algorithm also includes information of each channel
separately. One could also formulate a multi-channel vectorial image filter in the same way.
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Algorithm 3 Multi-Channel Harmonic Filter Algorithm

Input: f1, f2 : R3 → R
Output: y : R3 → R, y := H{ f1, f2}

1: Initialisey1
n := 0 ∈ Tn

2: Initialisey2
n := 0 ∈ Tn

3: Initialisey3
n := 0 ∈ Tn

// compute projections onto harmonic basis
4: Convolvep1

0 := Gσ ∗ f1
5: Convolvep2

0 := Gσ ∗ f2
6: for j = 1 : n do
7: p1

j = ∇1p1
j−1

8: p2
j = ∇1p2

j−1

9: end for
// compute harmonic descriptors

10: for j = n : −1 : 1 do

11: y1
j−1 = ∇1

(
y1

j + N j
[
p1

0, . . . , p1
j
])
// for f1 only

12: y2
j−1 = ∇1

(
y2

j + N j
[
p2

0, . . . , p2
j
])
// for f2 only

13: y3
j−1 = ∇1

(
y3

j + N j
Multi

[
p1

0, . . . , p1
j, p2

0, . . . , p2
j
])
// combination off1 and f2

14: end for
15: Let y := y1

0 + y2
0 + y3

0

// collect the contribution of all voters
16: Convolvey := Gη ∗ y
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Figure 4.3: Workflow of the harmonic filter for two channels: green and blue.

4.6 Antisymmetric Products and Local Non-linearities

As mentioned in the preliminaries section, forj = j1 = j2 = 1 andv = Sb, w = Sc∈ V1 and
b, c ∈ R3 it holds

−i(v ◦1 w) =
1
√

2
S
(
b × c

)

When we think ofv = ∇1 f (r ) andw = ∇1g(r ) to be the spherical gradient at positionr of
two scalar fieldsf andg (actually we have∇1 f (r ) = S∇ f (r ) and∇1g(r ) = S∇g(r ) ), v ◦1 w
computes the cross products of their gradients at positionr . For our image filter, this is only
useful when we are in the context of multi-channel images. Otherwise we have (think of the
single channel case) that (∇1f (r )) ◦1 (∇1f (r )) = 0.

Since the resulting field (f ◦ j g) ∈ T j for f ∈ T j1, g ∈ T j1 and j + j1 + j2 = odd, maps onto
elements ofiV j, we have to multiply them with−i in order to get a spherical tensor field that
maps ontoV j:

−i (f ◦ j g) : R3 → V j

Inserting the above in our voting functionN j
Multi [·] we are able to formulate the following

extension for multi-channel images:

Definition 4.6.1. Let f1, f2 ∈ Tℓ and letp0
1, . . . , p

n
1 and p0

2, . . . , p
n
2 be their expansion in the
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harmonic basis. We defineN j
Asymas

N j
Asym

[
p0

1, . . . , p
n
1, p

0
2, . . . , p

n
2

]
:=

∑

| j1− j2|≤ j≤ j1+ j2
j1+ j2+ j even

j1, j2≤n

α
j
j1, j2

p j1
1 • j p j2

2

−
∑

| j1− j2|≤ j≤ j1+ j2
j1+ j2+ j odd

j1, j2≤n

α
j
j1, j2

i (p j1
1 ◦ j p j2

2 )

whereα j
j1, j2
∈ R are expansion coefficients.

In algorithm 4 we give a possible realisation of a multi-channel scalar image filter. But many
other realisations are possible. One could include information of the single channel separately
as we did it in algorithm 3 on page 26 or extend the algorithm tohigher order input or both.

Algorithm 4 Multi-Channel Harmonic Filter Algorithm with Antisymmetric Products

Input: f1, f2 : R3 → R, i = 1, 2
Output: y : R3 → R, y := H{ f1, f2}

1: Initialiseyn := 0 ∈ T0

// compute projections onto harmonic basis
2: Convolvep1

0 := Gσ ∗ f1
3: Convolvep2

0 := Gσ ∗ f2
4: for j = 1 : n do
5: p1

j = ∇1p1
j−1

6: p2
j = ∇1p2

j−1

7: end for
// compute harmonic descriptors

8: for j = n : −1 : 1 do

9: y j−1 = ∇1

(
y j + N j

Asym

[
p1

0, . . . , p1
j, p2

0, . . . , p2
j
])

10: end for
11: Let y := y0 + N0

Asym

[
p1

0, . . . , p1
j , p2

0, . . . , p2
j
]

// collect the contribution of all voters
12: Convolvey := Gη ∗ y



5 Steerable Filter

This section introduces the concept of steerable filters ([FY91], [JU04] and [AJU05]) in a con-
text of an orientation dependent feature detection task in 3D. In the sense of a matched filter
(figure 5.1) this means, that we filter our input signalf (x) with our templateh(x) and get the
filter response asr(x) = f (x) ∗ h(x) (by convolution). Measuring the similarity off (x) and the
shifted templateg(x) = h(x − τ) by the inner product〈 f | g〉, each voxel position in the filtered
signalr(x) reflects the similarity of the input signal and the templateat that position.

Figure 5.1: Matched filter.

Since we are interested in detecting arbitrary rotated versions of our template, we can state the
following optimisation task:

(θ(x)∗, φ(x)∗) = arg max
θ,φ

( f (x) ∗ h(Rθ,φx)) (5.1)

whereh(Rθ,φx) is the feature template rotated by Euler angelsθ andφ.

The magnitude of the filterr∗ with respect to the optimal orientation of the appropriate feature
template is given by

r∗(x) = f (x) ∗ h(Rθ∗,φ∗x) (5.2)

A direct implementation of the postulated problem (5.2) is computationally very expensive
and cannot be applied to real world scenarios. Accordingly,we will follow the steerable for-
mulation introduced in [FY91]. Therefore we need to define a family of separable basis filters,
which can be used to build any rotated version of the filter by taking a linear combination of
the basis filters (for an introductory example in 2D see [FY91]).

5.1 M-th Order Basis Filter Bank

By taking the linear combination of a small number of basis filters, we can reduce the compu-
tational costs by filtering our input signal only with the basis filter bank.

29



30 Steerable Filter

For the creation of our feature template we use the linear combination ofM-th order partial
derivatives of an isotropic 3D Gaussian functiong(x) (we assume standard deviationσ = 1
and meanµ = 0 for convenience) according to [AJU05]:

h(x) =
M∑

k=1

k∑

i=0

k−i∑

j=0

αk,i, j
∂i

∂xi
1

∂ j

∂xj
2

∂k−i− j

∂xk−i− j
3

g(x)

︸                  ︷︷                  ︸
hk,i, j (x)

, αk,i, j ∈ R (5.3)

=

M∑

k=1

k∑

i=0

k−i∑

j=0

αk,i, j hk,i, j(x) (5.4)

∂i

∂xi
1

denotes thei-th partial derivative along the coordinatex1, writing our coordinate vector as

x = (x1, x2x3)T . The functionshk,i, j(x) build up the basis filter bank.
Now we can formulate the convolution of the input volumef (x) with a rotated version of the
steerable filter as

f (x) ∗ h(Rθ,φx) =
M∑

k=1

k∑

i=0

k−i∑

j=0

βk,i, j(θ, φ) f ∗ hk,i, j(x) (5.5)

where the orientation dependent weightsβk,i, j(θ, φ) are polynomials in (cosθ sinφ), (sinθ sinφ)
and cosφ (see [JU04] and [FY91]).
It is obvious considering equation (5.5), that we only have to know the filter response of our
basis filters to compute the filter response ofh(Rθ,φx). The principal work flow of the steerable
filter algorithm is depicted in figure 5.2. Details on this will be given in section 5.3 on the next
page.

But first, we need to do some considerations on how to design anoptimal template for our
specific mitosis detection task.

Figure 5.2: Illustration of the steerable filter algorithm.



5.2 Design of the Template 31

5.2 Design of the Template

The authors in [AJU05] derive optimal surface and curve detector oriented along thex1 axis
by minimising the localisation error which yields to the following representation:

h(x) =


∂2

∂x2
1

g+
∂2

∂x2
2

g+
∂2

∂x2
3

g


︸                        ︷︷                        ︸

△g

−
(
α + 1

) ∂2

∂x2
1

g (5.6)

△g denotes the isotropic 3D laplacian ofg, which is invariant to rotations. The parameterα ∈ R
is for the surface detectorα = 4 and for the curve detectorα = 2

3 (see [AJU05] for details).
Since we do not have templates than can be given in an analytical way, like a line or a surface
as used by [AJU05], we defined the detector empirically. The detector we used is depicted in
figure 5.3 and is given by settingα = 3 in equation (5.6). We chose the parameters to best fit
the spindle centres of mitosis cells.

The question arises why not to use an SVD approach for steerable filters as described in
[SMH98]. The answer is the harmonic filter (see chapter 4) which is in fact a more general
approach than the one described in [SMH98].

Figure 5.3: Idea of 3D steerable filter.

5.3 Steering and Implementation

We can rotate our featureh(x) to an arbitrary orientation specified byv = (cosθ sinφ, sinθ sinφ, cosφ)T

h(Rθ,φx) =


∂2

∂x2
1

g+
∂2

∂x2
2

g+
∂2

∂x2
3

g

 −
(
α + 1

)
vTHgv (5.7)

Hg denotes the 3D Hessian matrix ofg(x). We can rewrite the expression as

h(Rθ,φx) = vTAgv (5.8)

where

Ag =


∂2

∂x2
1

g+
∂2

∂x2
2

g+
∂2

∂x2
3

g

 I − (α + 1)Hg
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and I denotes the identity matrix. Using the linearity of the convolution, we can write the
convolution with our rotated feature template as

f (x) ∗ h(Rθ,φx) = vTA f ∗gv (5.9)

Finally steering of our feature template is done via Eigenvalue Decomposition. The solution
of the optimal filter response and orientation respectivelyis given by

r∗ = λmax (5.10)

v∗ = emax (5.11)

λmax denotes the maximum eigenvalue ofA f ∗g andemax the corresponding eigenvector.

For the implementation one only has to evaluate the 3× 3 matrixA f ∗g for each position in the
input volume. Therefore, we first compute the convolution with our basis filter bank

∂2

∂x2
1

g,
∂2

∂x2
2

g,
∂2

∂x2
3

g,
∂2

∂x1∂x2
g,

∂2

∂x1∂x3
g,

∂2

∂x2∂x3
g

and afterwards we get the optimal response and orientation by computing the Eigenvalue De-
composition ofA f ∗g.



6 Feature Computation

In this chapter we present our features which we have used forclassification and validation
of mitosis cells. We utilise the mathematical theory of spherical harmonics (see chapter 3.3
on page 13) to represent functions defined on a sphere in a rotation invariant manner. When
we speak of functions defined on a sphere we meanF : S2 → R in a most common sense.
More practical, representing a whole data set by this definition means we define our function
sampled on the scaled 2-sphere

F : r S2→ R
wherer ∈ R andr S2 := {x ∈ R3| ∃ s ∈ S2 : x = r s}. We denote the radiusr of the sphere
as subscriptFr , when we want to distinguish functions sampled at different shell radii (see
figure 6.1 on the next page).

6.1 Spherical Harmonic Descriptor

Orthogonal projection of a spherical functionF(θ, φ) into the sum of its harmonics:

F(θ, φ) =
∞∑

l=0

l∑

m=−l

al
m · Yl

m(θ, φ) (6.1)

whereal
m compute as

al
m = 〈F |Yl

m〉 =
∫

S2
F(s) Yl

m(s) ds (6.2)

wheredsdenotes the standard measure onS2.
Let g ∈ SO(3) an element of the rotation group.g acts on functions defined on the 2-sphereF
by

(gF)(s) := F(RTs)

whereR ∈ R3×3 is the corresponding rotation matrix tog. The expansion coefficientsal
m of F

in equation (6.2) have the following transformation property

m′=l∑

m′=−l

Dl
mm′(g) al

m′ = 〈Yl
m | gF〉,

or shortly
Dl

ga
l = 〈Y l | gF〉. (6.3)

The Dl
g are unitary transformation matrices depending on the rotation g and are known as

Wigner D-matrices(see section 3.1 on page 10). This property allows us to obtain invariance
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34 Feature Computation

Figure 6.1: FunctionsFr defined on the scaled 2-spherer S2

against rotations.
Due to the unitarity ofDl

g the energy within a subspacel is preserved. One can easily obtain
invariant features of the functionF by taking the band-wise energy

‖Dl
g al‖ =

√
〈Dl

g al |Dl
g al〉 =

√
〈al | al〉 =

√√
m=l∑

m=−l

|al
m|2 = ‖al‖

Doing this for all l = 0, . . . ,N whereN ∈ N is the index by which we truncate the series in
equation (6.1) and defining

SHD(F,N) = { ‖a0‖, . . . , ‖aN‖ } , (6.4)

we get an rotation invariant description ofF defined on a sphere. The descriptor given by (6.4)
is called SH-descriptor (see [KFR03]). For each radiusr i ∈ R, i = 1, . . . ,M on which we
sample our data we can define the descriptor SHD(Fr i ,N) (see figure 6.2 on the next page) and
get our final feature vector by appending the feature vectorsof different radii.

We also gain invariance to rotations by calculating the inner product of expansion coefficients
of corresponding subspaces defined by different radii. Letr i andr j be radii of different shells
andFr i andFr j the corresponding functions defined onr i S2 andr j S2 respectively. Letal be
the expansion coefficients (of a fixed subspacel) of Fr i andbl of Fr j respectively. Then we
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Figure 6.2: Shell model.

gain rotation invariance due to the unitarity ofDl
g

〈Dl
ga

l |Dl
gb

l〉 = 〈al | bl〉 = alTbl =

m=l∑

m=−l

al
mbl

m (6.5)

We can do this for different radii combinations and append the result to our feature vector.
Note that we have to assume that the shells have a fixed orientation to each other, meaning all
spheres are rotated by the same elementg ∈ SO(3).

6.2 Extending the Descriptor to Multi-Channel Data

Now we want to do some considerations on how we can extend the descriptor defined in
section 6.1 on page 33 to multi-channel data. By treating each channel independently it is ob-
vious that we compute a descriptor as described in section 6.1 on page 33 for each channel.
By appending the resulting descriptors of each channel to one large feature vector, we get an
invariant descriptor which, however, does not respect the interconnection of channels.
The simplest way to include information about interconnection of multiple channels would
be to follow the same approach as for connecting functions ondifferent spheres, namely by
inner product. We can assume that all channels have a rigid interconnection, because they
represent the same object. By rotating the object itself, werotate each channel by the same
elementg ∈ SO(3). Therefore equation (6.5) holds for spherical functions defined by different
channels. So we get a rotation invariant description of the interconnection of two channels by
computing the inner product of their expansion coefficients.
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Algorithm 5 SH-Descriptor for Multiple Channels
Input: Xi : R3→ R, i = 1, . . . ,N list of channels
Input: r i ∈ R, i = 1, . . . ,M list of radii
Input: (r i, r j) ∈ R2, 1≤ r i , r j ≤ M list of radii tuples
Input: (i, j) ∈ N2, 1≤ i, j ≤ N list of channel index tuples
Output: Invariants
// compute SH-Descriptor for each channel

1: for i = 1, . . . ,N do
2: for all r ∈ radii do
3: Inv := band-wise energy for radiusr in sourceXi

4: append Inv to list of invariants
5: end for
6: for all (r1, r2) ∈ radii tuplesdo
7: Inv := inner product of radiir1 andr2 in sourceXi

8: append Inv to list of invariants
9: end for

10: end for
// compute interconnection invariants of channels

11: for all (i, j) ∈ index tuplesdo
12: for all r ∈ radii do
13: Inv := band-wise inner product for radiusr in sourcesXi andX j

14: append Inv to list of invariants
15: end for
16: for all (r1, r2) ∈ radii tuplesdo
17: Inv := band-wise inner product of radiusr1 in sourceXi and radiusr2 in sourceX j

18: append Inv to list of invariants
19: end for
20: end for
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Figure 6.3: FITC channel profile image.ci are gradient direction quantisation values.r i is the
radius of the sphere on which the signal was sensed. The indexi is the radius of
the sphere inµm.

6.3 Simplified MiSP Invariants for Multi-Channel Data

We will introduce a simplified version of the MiSP invariantsused in [Ron07]. The main goal
in [Ron07] was to integrate a global deformation model into the Haar-Integration framework
(see [SM95] and [RFB05]). Therefore, the original dense 3D space was split up into gradient
direction and gradient magnitude for the construction of robust invariants (see also [SSR+06])
and projected onto a 4D sparse space that was spanned by the parameters:‖d‖ = distance
to segmentation surface,c = radial component of the normalised gradient, and the sensed
signal as function of a deformed sphere (shell with distance‖d‖ to segmentation surface)
parametrised by latitudeθ and colatitudeφ.
Since we do not have any information about the contour of our objects, we can not model
deformations as done in [Ron07]. However, when we assume fixed concentric shells around
the object centre, as depicted in 6.2, we can project the original dense space onto the sparse 4D
space by replacing the distance‖d‖ to the segmentation surface by the distance to the object
centre. The resulting sparse 4D space is shown in figure 6.3 and 6.4.
The extension to multi-channel data is straightforward, wesimply combine the 4D space of
all channels into one multi-channel image (see figure 6.5).
Since we are interested in being invariant to rotations of our objects, we follow the same ap-
proach as used in section 6.2.
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Figure 6.4: DAPI channel profile image.ci are gradient direction quantisation values.r i is the
radius of the sphere on which the signal was sensed. The indexi is the radius of
the sphere inµm.
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Algorithm 6 MiSP Invariants (for 1 Image)

Input: X : R3 → R
Output: Invariants := MiSP(X) list of invariants
Input: r i ∈ R, i = 1, . . . ,M list of radii
Input: (r i , r j) ∈ R2, 1 ≤ r i, r j ≤ M list of radii tuples
Input: (i, j) ∈ N2, 1≤ i, j ≤ N list of
Input: gradDir, list of gradient direction quantisation
Output: Invariants
// compute 4D profile

1: Initialise profile := 0 ∈ R4 // dimensions are distance to centre (”shell”), radial component
of gradient direction (”gradDir”),θ andφ

2: Initialise weights := 0 ∈ R4 // dimensions as profile
3: D := array 3D containing radial distance to object centre
4: G := radial component of gradient direction
5: M := gradient magnitude of
6: for all (θ, φ) do
7: for all x on a beam in (θ, φ) directiondo
8: profile(D(x),G(x), θ, φ)+ = M(x) // array access uses tri-linear interpolation
9: weights(D(x),G(x), θ, φ)+ = 1

10: end for
11: end for
12: profile / = weights
// compute spherical harmonic transform

13: profileSH := 0 ∈ R4 // dimensions are shell, gradDir and Spherical Harmonics parameters
l andm

14: for all r i in profiledo
15: for all gradDir in profiledo
16: profileSH(shell, gradDir) := SH-Transform(profile(shell, gradDir))
17: end for
18: end for
// compute invariants

19: for all r i and gradDirdo
20: Compute band-wise energy
21: Append energy to Invariants
22: end for
23: for all (r i, r j) and gradDirdo
24: Compute band-wise inner product of different shells
25: Append energy to Invariants
26: end for



40 Feature Computation

r1

r2

r3

r4

r5

r6

c1 = −6
7 c2 = −4

7 c3 = −2
7

c4 = 0 c5 =
2
7 c6 =

4
7 c7 =

6
7

Figure 6.5: Multi-channel profile image.ci are gradient direction quantisation values.r i is the
radius of the sphere on which the signal was sensed. The indexi is the radius of
the sphere inµm.



7 Experiments

7.1 Description of Data

The imaging of the cell line data was done with Zeiss ApoTome.The ApoTome uses the prin-
ciple of structured illumination (see [SSS04] and [BS06] for details) to improve resolution in
the axial dimension.

Though, structured illumination techniques allow imagingthick tissue samples, it also leads to
artifacts in the reconstructed images due to bleaching effects of the tissue. Figure 7.1 shows an
example of a ApoTome recorded stack slice. One can clearly see the wave artifacts stemming
from the projected grid.

(a) Channel0 XY-slice (b) Channel1 XY-slice

Figure 7.1: XY-slice of a stack recorded with the ApoTome showing the wave artifacts which
arise from structured illumination techniques. The presented images are highly
gamma corrected

Note that we will refer to the centrosome channel (FITC) as channel-0, whereas for the cell
membrane (DAPI) channel as channel-1.
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7.2 Segmentation

For segmentation of cell we did experiments with a standard watershed segmentation algo-
rithm. Since the cells showed many disconnected regions (see 7.2) we applied in a previous
step a fill-hole algorithm. The segmentation results are depicted in 7.3. One can clearly see that
the result is highly over segmented. Therefore we neglectedto use the segmentation results for
our experiments.

(a) Channel1 XY-
slice

(b) Channel1 XY-
slice

(c) Channel1 XY-
slice

(d) Channel1 XY-
slice

Figure 7.2: Images with disconnected regions: ”holes” and ”gaps”.

(a) Raw data XY-slice (b) Region labels XY-slice

(c) Segmentation mask XY-slice

Figure 7.3: Result of the watershed segmentation algorithm.
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7.3 Detection of Mitosis Cells

In this section we will present the results of steerable filter, harmonic filter and multi-channel
harmonic filter algorithms which we described in chapter 4 and 5.
For the steerable filter, we could only use channel-0, because it is very difficult to design a tem-
plate that would match the various shapes of the cells at hand(see appendix D for the whole
cell database). We used a normalised version ”SF(Norm)” anda version without normalisation
”SF(c0)”. The normalisation was done by mapping the values of the input data on the interval
[0, 1]. Furthermore, and in analogy to the collection of local voters as for the harmonic filter,
we applied an output smoothing to the filter response to make regions of high local evidence
smooth. We refer to them as ”SFS(c0)” and ”SFS(Norm)” respectively. Note that also for the
steerable filter we have a kind of local non-linearity, namely by taking highest eigenvalue of
the eigenvalue decomposition.
For the harmonic filter and for the multi-channel harmonic filters, we used a normalised ver-
sion and a version without normalisation. We refer to them as”HF(c0)” and ”HF(c0,Norm)”
for the single channel version applied to channel-0 and as ”HFM” and ”HFM(Norm)” re-
spectively. The harmonic filter using antisymmetric is denoted as ”HFMasym” and ”HF-
Masym(Norm)” for the normalised version. The normalisation was done as proposed in sec-
tion 4.2 on page 19 by equation (4.7), by a normalisation of the first-order descriptor image
on the standard deviation of local window.
The vectorial harmonic filter is denoted as ”HFM(GVF)” according to the gradient vector flow
fields of channel-0 and channel-1 which were used as filter input. For the normalisation we set
all vectors to unity length, which means that we only had directional information of the flow
field.

Before we go into further details we will represent an overview of the filters described above.
Table 7.1 on page 45 gives an overview results of the mitosis detection results achieved by the
various filters. Figure 7.3 on the following page gives an overview of the complete precision-
recall graphs of the various filters. All results were calculated by counting a detection as posi-
tive if it was in a precision radius of 3µmaround the given label position in order to assure that
we are inside the cell (average cell diameter was 9µm). The best results were achieved with
”HFMasym”, the multi-channel harmonic filter with symmetric and antisymmetric products.
A detailed description of all the results can be found in appendix B.

We already discussed the normalisation we chose for our filters. In case of the harmonic filter
and the smoothed steerable filter we have to choose the sizeη of the Gaussian window. Forη
we chose half of the average cell diameter, which was found tobe 4.5µm. For the harmonic
filters we also had to choose the size of the local featuresσ. We achieved our best results with
σ = 1.5µm. For the expansion degree we usedn = 4. The influence of the different expansion
degrees is depicted in 7.5(b) on page 45. If the expansion degree is to low the precision and
recall values are getting worse. This is also the case if we choose the expansion degree to high.
The filter looses its generalisation ability. A good choice for the parameterγ was found to be
0.1. We mapped all input data values for the scalar filter to the range [0, 1] as we did for the
normalised steerable filter.
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(a) Steerable filter overview (b) Multi-channel harmonic filter overview

(c) Harmonic filter vs steerable filter on channel0(d) Multi-channel harmonic filter vs steerable filter

(e) Multi-channel harmonic filter overview (nor-
malised)

(f) Multi-channel harmonic filter overview (no nor-
malisation)

Figure 7.4: Precision-Recall overview of the different filter algorithms.
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Table 7.1: Detection results (recall) in % for fixed precision values.
Filter 50% Precision 70% Precision 90% Precision
SF(c0) 9% 5%< 5%<
SF(Norm) 5%< 5%< 5%<
SFS(c0) 80% 76% 64%
SFS(Norm) 83% 83% 65%
HF(c0) 82% 77% 42%
HF(c0,Norm) 83% 64% 71%
HFM 91% 88% 83%
HFM(Norm) 98% 92% 87%
HFM(GVF) 86% 80% 73%
HFM(GVF,Norm) 45% 5%< 5%<
HFMasym 98% 94% 89%
HFMasym(Norm) 97% 96% 88%

(a) Different precision radii. (b) Different expansion valuesL.

Figure 7.5: Precision-Recall for different filter parameters of ”HFM(Norm)”

The data set with the most false detections is depicted in figure 7.6 on the following page. The
data set shows one huge aberrant cell for which we gave no labels. It was the only appearance
of such a cell.
All filters had problems when the cells in the input data were larger than the diameter of our
voting function, which was especially the case for cells in the control group. Figure 7.7 on
page 47 shows an example of a cell that was too large. The cell was detected as two separate
cells, but with low filter response in case of the harmonic filters.

Figure 7.8 on page 48 shows an example where all filters had good results. But one can also
see the that the harmonic filters have much better localisation precisions of the ”true” cell cen-
tre than the steerable filter.
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Figure 7.6: HT29 (STK15,4) data set with a huge aberrant cell.

Figure 7.9 on page 49 shows a false positive detection of the harmonic filters. It is conspicuous
that the normalised filter HFM(Norm) has the highest response and it is likely due to the fact
that we have very small standard deviation in channel-0. Oneshould set a higherγ value in
the normalisation to avoid such false detections.
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(a) Raw data MIP (b) SF(Norm)

(c) HFM(Norm) (d) SFS(Norm)

(e) HFMasym (f) HFM(GVF)

Figure 7.7: Filter responses for a DLD1 (STK15,1,DMSO) dataset.
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(a) Raw data MIP (b) SF(Norm)

(c) HFM(Norm) (d) SFS(Norm)

(e) HFMasym (f) HFM(GVF)

Figure 7.8: Filter responses for a HT29 (STK15,1) data set.
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(a) Raw data MIP (b) SF(Norm)

(c) HFM(Norm) (d) SFS(Norm)

(e) HFMasym (f) HFM(GVF)

Figure 7.9: Filter responses for a HCT116 (STK15,1,DMSO) data set.
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7.4 Cross Validation Results

In order to form our cell database, we extracted all mitosis cells of the original stacks (see
appendix D). Since we had only few examples of DLD1 and HCT116, we decided to do a
cross validation in order to compare our features. As classifier we chose a SVM with histogram
intersection kernel, and a NN classifier. For the scaled SVM kernel we normalisation of our
features with standard deviation.

Class DLD1 HCT116 HT29 All Classes

# Samples 20 27 81 128

Table 7.2: Cell database details.

We computed seven different features. All features that involved sampling the input data on
different shell radii, were evaluated at radii ranging from 1µm to 11µmwith a step size of 1µm.

SHD are SH-Descriptor computed on channel-1.

SHD-Multi are SH-Descriptors computed on channel-0 and channel-1. The resulting feature
vectors were append to on large feature vector.

SHD-MultiC are the same as SHD-Multi, but additionally we computed for each radius the
inner product of channel-0 and channel-1 expansion coefficients.

SHD-MIP is the SH-Descriptor computed on the maximum intensity projection of all shells.

SHD-AIP same SHD-MIP but using average intensity projection of all shells.

MISP-Multi are the MISP invariant computed of channel-0 and channel-1 with seven quan-
tised gradient directions ranging−6

7 to 6
7 with a step size of17.

MISP-MultiC are the same as MISP-Multi, but additionally we computed foreach radius
the inner product of quantised gradient directions of channel-0 and channel-1.

In table 7.3 on the facing page we present an overview of all cross validation results. SHD-
Multi were the best with SVM as classifier. The most stable results were achieved with MISP-
Multi, were we have nearly the same results for all classifiers.
Details on all cross validation results including confusion matrices can be found in appendix
C.
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Table 7.3: Overview of cross-validation statistics of the mitosis cell database. Each row shows
the true positive rate for a specific feature. The best resultfor each classifier (single
row) is printed in bold face.

Feature/Classifier SVM SVM (scaled) 1-NN (L1-Norm) 1-NN (L2-Norm)

SHD 69.53% 74.22% 67.2% 69.5%
SHD-Multi 83.59% 82.03% 70.3% 64.8%
SHD-AIP 68.75% 64.84% 68.0% 57.8%
SHD-MIP 70.31% 68.75% 69.5% 68.8%
SHD-MultiC 74.22% 81.25% 70.3% 64.8%
MISP-Multi 78.12% 78.12% 78.1% 72.7%
MISP-MultiC 75.78% 78.91% 71.9% 67.2%

7.5 Validation with Support Vector Machines

For validation we classified all detected maxima with a SVM. The best results were achieved
with SHD- MIP descriptor. But the database was to small to come to a meaningful conclusion.

Feature #Labels #TP #FP #FN #TN #Detections

SHD-Multi 128 124 1857 0 3953 5934
SHD-MultiC 128 124 1877 0 3933 5934
MISP-MultiC 128 124 2462 0 3348 5934
MISP-Multi 128 124 2533 0 3277 5934
SHD- MIP 128 109 104 15 5706 5934
SHD- AIP 128 109 1277 15 4533 5934

Table 7.4: Overview of the validation results.





8 Conclusion and Outlook

This work presented a new approach towards image filtering ofmulti-channel 3D images and
feature extraction methods.
We introduced a novel framework based harmonic filters that allows us to use multi-channel
images and therefore information of more than one input channel. We achieved much better
results as the standard algorithms used for single channel gray-scale images.
We successfully extended existing 3D invariant features such as SH-Descriptors an gray-scale
MISP invariants to their multi-channel counterparts.

8.1 Outlook

The introduced algorithms form a good basis for further research and applications on multi-
channel image filtering and feature extraction. But there are still issues that have to be ad-
dressed to.

Segmentation of the cells could increase the quality of the features and increase the classifica-
tion results.
One should also consider a way to automatically select best parameters for radii and combi-
nations of radii of our proposed features during the training phase.

Since we had only few tissue samples we were not able to do meaningful experiments and
finally answer the question whether it is possible to train oncell line data and classify on
tissue samples. Figure 8.1 and the following figures show tissue samples and filter responses
of harmonic filters trained on cell line data. The results look very promising.

53



54 Conclusion and Outlook

(a) Tissue raw data MIP (b) Filter response of HFM(Norm)

(c) Filter response of HF-
Masym(Norm)

(d) Filter response of HFM(GVF)

Figure 8.1: Filter response of harmonic filters on tissue sample (example 1). Filters were
trained with cell line data.

(a) Tissue raw data MIP (b) Filter response of HFM(Norm)

(c) Filter response of HF-
Masym(Norm)

(d) Filter response of HFM(GVF)

Figure 8.2: Filter response of harmonic filters on tissue sample (example 2). Filters were
trained with cell line data.
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(a) Tissue raw data MIP (b) Filter response of HFM(Norm)

(c) Filter response of HF-
Masym(Norm)

(d) Filter response of HFM(GVF)

Figure 8.3: Filter response of harmonic filters on tissue sample (example 3). Filters were
trained with cell line data.

(a) Tissue raw data MIP (b) Filter response of HFM(Norm)

(c) Filter response of HF-
Masym(Norm)

(d) Filter response of HFM(GVF)

Figure 8.4: Filter response of harmonic filters on tissue sample (example 4). Filters were
trained with cell line data.





A Appendix

A.1 Spherical Harmonics

We always use Racah-normalised spherical harmonics. In terms of Legendre polynomials they
are written as

Yℓ
m(φ, θ) =

√
(l −m)!
(l +m)!

Pℓ
m(cos(θ))eiφ

Mostly we write r/r ∈ S2 instead of (φ, θ). The Racah-normalised solid harmonics can be
written as

Rℓ
m(r ) =

√
(ℓ +m)!(ℓ −m)!

∑

i, j,k

δi+ j+k,ℓδi− j,m

i! j!k!2i2 j
(x− iy) j(−x− iy)izk,

wherer = (x, y, z). They are related to spherical harmonics byRℓ
m(r )/rℓ = Yℓ

m(r/r)

A.2 Clebsch Gordan Coefficients

Orthogonality
∑

j,m

〈 jm| j1m1, j2m2〉〈 jm| j1m′1, j2m
′
2〉 = δm1,m′1

δm2,m′2
(A.1)

∑

m=m1+m2

〈 jm| j1m1, j2m2〉〈 j′m′| j1m1, j2m2〉 = δ j, j′δm,m′ (A.2)

∑

m1,m

〈 jm| j1m1, j2m2〉〈 jm| j1m1, j′2m
′
2〉 =

2 j + 1
2 j′2 + 1

δ j2, j′2
δm2,m′2

(A.3)

Special Values

〈ℓm|(ℓ − λ)(m− µ), λµ〉 =

ℓ +m
λ + µ


1/2 

ℓ −m
λ − µ


1/2 

2ℓ
2λ


−1/2

(A.4)

〈ℓm|(ℓ + λ)(m− µ), λµ〉 = (−1)λ+µ

ℓ + λ −m+ µ

λ + µ


1/2


ℓ + λ +m− µ

λ − µ


1/2 

2ℓ + 2λ + 1
2λ


−1/2 (A.5)
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Symmetry

〈 jm| j1m1, j2m2〉 = 〈 j1m1, j2m2| jm〉 (A.6)

〈 jm| j1m1, j2m2〉 = (−1)j+ j1+ j2〈 jm| j2m2, j1m1〉 (A.7)

〈 jm| j1m1, j2m2〉 = (−1)j+ j1+ j2〈 j(−m)| j1(−m1), j2(−m2)〉 (A.8)

A.3 Wigner D-Matrix

The components ofDℓ
g are writtenDℓ

mn. They are called the Wigner D-matrix. In Euler angles
φ, θ, ψ in ZYZ-convention we have

Dℓ
mn(φ, θ, ψ) = eimφdℓmn(θ)e

inψ,

wheredℓmn(θ) are the Wigner d-matrix which is real-valued. Relation to the Clebsch Gordan
coefficients:

Dℓ
mn =

∑

m1+m2=m
n1+n2=n

Dℓ1
m1n1

Dℓ2
m2n2
〈lm|l1m1, l2m2〉〈ln|l1n1, l2n2〉 (A.9)

Dℓ1
m1n1

Dℓ2
m2n2
=

∑

l,m,n

Dℓ
mn〈lm|l1m1, l2m2〉〈ln|l1n1, l2n2〉 (A.10)



B Details of all Filter Algorithms

B.1 Steerable Filter

(a) Precision-Recall graph. (b) Detection details and equal error rate threshold.

(c) Details per file.

Figure B.1: Details for SF(c0).

59



60 Details of all Filter Algorithms

(a) Precision-Recall graph. (b) Detection details and equal error rate threshold.

(c) Details per file.

Figure B.2: Details for SF(Norm).
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(a) Precision-Recall graph. (b) Detection details and equal error rate threshold.

(c) Details per file.

Figure B.3: Details for SFS(c0).



62 Details of all Filter Algorithms

(a) Precision-Recall graph. (b) Detection details and equal error rate threshold.

(c) Details per file.

Figure B.4: Details for SFS(Norm).
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B.2 Harmonic Filter (Single Channel)

(a) Precision-Recall graph. (b) Detection details and equal error rate threshold.

(c) Details per file.

Figure B.5: Details for HF(c0).



64 Details of all Filter Algorithms

(a) Precision-Recall graph. (b) Detection details and equal error rate threshold.

(c) Details per file.

Figure B.6: Details for HF(c0,Norm).
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B.3 Harmonic Filter Multi-Channel

(a) Precision-Recall graph. (b) Detection details and equal error rate threshold.

(c) Details per file.

Figure B.7: Details for HFM.
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(a) Precision-Recall graph. (b) Detection details and equal error rate threshold.

(c) Details per file.

Figure B.8: Details for HFM(Norm).
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B.4 Harmonic Filter Multi Channel (GVF)

(a) Precision-Recall graph. (b) Detection details and equal error rate threshold.

(c) Details per file.

Figure B.9: Details for HFM(GVF).



68 Details of all Filter Algorithms

(a) Precision-Recall graph. (b) Detection details and equal error rate threshold.

(c) Details per file.

Figure B.10: Details for HFM(GVF,Norm).
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B.5 Harmonic Filter Multi Channel (Antisymmetric
Products)

(a) Precision-Recall graph. (b) Detection details and equal error rate threshold.

(c) Details per file.

Figure B.11: Details for HFMasym.
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(a) Precision-Recall graph. (b) Detection details and equal error rate threshold.

(c) Details per file.

Figure B.12: Details for HFMasym(Norm).



C Cross Validation Results

C.1 SVM Histogram Intersection Kernel

Table C.1: SHD

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 5/20 (25%) 11/108 (10.19%)
HCT116 12/27 (44.44%) 15/101 (14.85%)
HT29 72/81 (88.89%) 13/47 (27.66%)

Total 89/128 (69.53%) 39/128 (30.47%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 5 10 5
HCT116 7 12 8
HT29 4 5 72

Table C.2: SHD-Multi

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 12/20 (60%) 2/108 ( 1.852%)
HCT116 18/27 (66.67%) 7/101 (6.931%)
HT29 77/81 (95.06%) 12/47 (25.53%)

Total 107/128 (83.59%) 21/128 (16.41%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 12 4 4
HCT116 1 18 8
HT29 1 3 77

Table C.3: SHD-AIP

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 7/20 (35%) 5/108 (4.63%)
HCT116 3/27 (11.11%) 2/101 (1.98%)
HT29 78/81 (96.3%) 33/47 (70.21%)

Total 88/128 (68.75%) 40/128 (31.25%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 7 1 12
HCT116 3 3 21
HT29 2 1 78
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Table C.4: SHD-MultiC

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 11/20 ( 55%) 7/108 (6.481%)
HCT116 12/27 (44.44%) 14/101 (13.86%)
HT29 72/81 (88.89%) 12/47 (25.53%)

Total 95/128 (74.22%) 33/128 (25.78%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 11 7 2
HCT116 5 12 10
HT29 2 7 72

Table C.5: MISP-MultiC

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 10/20 ( 50%) 3/108 ( 2.778%)
HCT116 8/27 ( 29.63%) 7/101 ( 6.931%)
HT29 79/81 ( 97.53%) 21/47 ( 44.68%)

Total 97/128 ( 75.78%) 31/128 ( 24.22%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 10 5 5
HCT116 3 8 16
HT29 0 2 79

Table C.6: SHD-MIP

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 9/20 ( 45%) 4/108 ( 3.704%)
HCT116 3/27 ( 11.11%) 4/101 ( 3.96%)
HT29 78/81 ( 96.3%) 30/47 ( 63.83%)

Total 90/128 ( 70.31%) 38/128 ( 29.69%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 9 2 9
HCT116 3 3 21
HT29 1 2 78

Table C.7: MISP-Multi

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 12/20 ( 60%) 4/108 ( 3.704%)
HCT116 13/27 ( 48.15%) 12/101 ( 11.88%)
HT29 75/81 ( 92.59%) 12/47 ( 25.53%)

Total 100/128 ( 78.12%) 28/128 ( 21.88%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 12 7 1
HCT116 3 13 11
HT29 1 5 75
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C.2 SVM Histogram Intersection Kernel (scaled)

Table C.8: SHD

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 6/20 ( 30%) 8/108 ( 7.407%)
HCT116 14/27 ( 51.85%) 15/101 ( 14.85%)
HT29 75/81 ( 92.59%) 10/47 ( 21.28%)

Total 95/128 ( 74.22%) 33/128 ( 25.78%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 6 11 3
HCT116 6 14 7
HT29 2 4 75

Table C.9: SHD-AIP

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 5/20 ( 25%) 10/108 ( 9.259%)
HCT116 5/27 ( 18.52%) 12/101 ( 11.88%)
HT29 73/81 ( 90.12%) 23/47 ( 48.94%)

Total 83/128 ( 64.84%) 45/128 ( 35.16%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 5 7 8
HCT116 7 5 15
HT29 3 5 73

Table C.10: SHD-MIP

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 9/20 ( 45%) 7/108 ( 6.481%)
HCT116 7/27 ( 25.93%) 10/101 ( 9.901%)
HT29 72/81 ( 88.89%) 23/47 ( 48.94%)

Total 88/128 ( 68.75%) 40/128 ( 31.25%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 9 4 7
HCT116 4 7 16
HT29 3 6 72
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Table C.11: MISP-Multi

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 12/20 ( 60%) 5/108 ( 4.63%)
HCT116 12/27 ( 44.44%) 12/101 ( 11.88%)
HT29 76/81 ( 93.83%) 11/47 ( 23.4%)

Total 100/128 ( 78.12%) 28/128 ( 21.88%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 12 7 1
HCT116 5 12 10
HT29 0 5 76

Table C.12: MISP-MultiC

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 11/20 ( 55%) 5/108 ( 4.63%)
HCT116 14/27 ( 51.85%) 10/101 ( 9.901%)
HT29 76/81 ( 93.83%) 12/47 ( 25.53%)

Total 101/128 ( 78.91%) 27/128 ( 21.09%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 11 7 2
HCT116 3 14 10
HT29 2 3 76

Table C.13: SHD-MultiC

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 9/20 ( 45%) 5/108 ( 4.63%)
HCT116 18/27 ( 66.67%) 10/101 ( 9.901%)
HT29 77/81 ( 95.06%) 9/47 ( 19.15%)

Total 104/128 ( 81.25%) 24/128 ( 18.75%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 9 9 3
HCT116 3 18 6
HT29 2 2 77

Table C.14: SHD-Multi

(a) Classification statistics

Class True Positives (%) False Positives (%)

DLD-1 11/20 ( 55%) 6/108 ( 5.556%)
HCT116 17/27 ( 62.96%) 9/101 ( 8.911%)
HT29 77/81 ( 95.06%) 8/47 ( 17.02%)

Total 105/128 ( 82.03%) 23/128 ( 17.97%)

(b) Confusion table

Class DLD-1 HCT116 HT29

DLD-1 11 7 2
HCT116 4 17 6
HT29 2 2 77
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C.3 NN Cross Validation Results

Table C.15: SHD

(a) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 8/20 (40.0%) 12/108 (11.1%)
HCT116 12/27 (44.4%) 15/101 (14.9%)
HT29 66/81 (81.5%) 15/47 (31.9%)

Total 86/128 (67.2%) 42/128 (32.8%)

(b) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 8 5 7
HCT116 6 12 9
HT29 3 12 66

(c) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 3/20 (15.0%) 17/108 (15.7%)
HCT116 3/27 (11.1%) 24/101 (23.8%)
HT29 60/81 (74.1%) 21/47 (44.7%)

Total 66/128 (51.6%) 62/128 (48.4%)

(d) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 3 8 9
HCT116 10 3 14
HT29 3 18 60

(e) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 9/20 (45.0%) 11/108 (10.2%)
HCT116 11/27 (40.7%) 16/101 (15.8%)
HT29 69/81 (85.2%) 12/47 (25.5%)

Total 89/128 (69.5%) 39/128 (30.5%)

(f) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 9 5 6
HCT116 7 11 9
HT29 2 10 69

(g) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 4/20 (20.0%) 16/108 (14.8%)
HCT116 1/27 (3.7%) 26/101 (25.7%)
HT29 58/81 (71.6%) 23/47 (48.9%)

Total 63/128 (49.2%) 65/128 (50.8%)

(h) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 4 6 10
HCT116 9 1 17
HT29 5 18 58
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Table C.16: SHD-Multi

(a) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 12/20 (60.0%) 8/108 (7.4%)
HCT116 11/27 (40.7%) 16/101 (15.8%)
HT29 76/81 (93.8%) 5/47 (10.6%)

Total 99/128 (77.3%) 29/128 (22.7%)

(b) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 12 4 4
HCT116 4 11 12
HT29 1 4 76

(c) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 5/20 (25.0%) 15/108 (13.9%)
HCT116 5/27 (18.5%) 22/101 (21.8%)
HT29 67/81 (82.7%) 14/47 (29.8%)

Total 77/128 (60.2%) 51/128 (39.8%)

(d) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 5 6 9
HCT116 5 5 17
HT29 5 9 67

(e) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 6/20 (30.0%) 14/108 (13.0%)
HCT116 11/27 (40.7%) 16/101 (15.8%)
HT29 74/81 (91.4%) 7/47 (14.9%)

Total 91/128 (71.1%) 37/128 (28.9%)

(f) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 6 9 5
HCT116 4 11 12
HT29 0 7 74

(g) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 3/20 (15.0%) 17/108 (15.7%)
HCT116 7/27 (25.9%) 20/101 (19.8%)
HT29 69/81 (85.2%) 12/47 (25.5%)

Total 79/128 (61.7%) 49/128 (38.3%)

(h) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 3 9 8
HCT116 4 7 16
HT29 2 10 69
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Table C.17: SHD-AIP

(a) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 10/20 (50.0%) 10/108 (9.3%)
HCT116 12/27 (44.4%) 15/101 (14.9%)
HT29 65/81 (80.2%) 16/47 (34.0%)

Total 87/128 (68.0%) 41/128 (32.0%)

(b) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 10 4 6
HCT116 3 12 12
HT29 5 11 65

(c) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 2/20 (10.0%) 18/108 (16.7%)
HCT116 4/27 (14.8%) 23/101 (22.8%)
HT29 52/81 (64.2%) 29/47 (61.7%)

Total 58/128 (45.3%) 70/128 (54.7%)

(d) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 2 8 10
HCT116 4 4 19
HT29 7 22 52

(e) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 9/20 (45.0%) 11/108 (10.2%)
HCT116 9/27 (33.3%) 18/101 (17.8%)
HT29 56/81 (69.1%) 25/47 (53.2%)

Total 74/128 (57.8%) 54/128 (42.2%)

(f) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 9 5 6
HCT116 4 9 14
HT29 7 18 56

(g) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 2/20 (10.0%) 18/108 (16.7%)
HCT116 3/27 (11.1%) 24/101 (23.8%)
HT29 51/81 (63.0%) 30/47 (63.8%)

Total 56/128 (43.8%) 72/128 (56.2%)

(h) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 2 10 8
HCT116 5 3 19
HT29 8 22 51
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Table C.18: SHD-MIP

(a) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 9/20 (45.0%) 11/108 (10.2%)
HCT116 11/27 (40.7%) 16/101 (15.8%)
HT29 69/81 (85.2%) 12/47 (25.5%)

Total 89/128 (69.5%) 39/128 (30.5%)

(b) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 9 4 7
HCT116 3 11 13
HT29 2 10 69

(c) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 5/20 (25.0%) 15/108 (13.9%)
HCT116 5/27 (18.5%) 22/101 (21.8%)
HT29 51/81 (63.0%) 30/47 (63.8%)

Total 61/128 (47.7%) 67/128 (52.3%)

(d) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 5 6 9
HCT116 4 5 18
HT29 9 21 51

(e) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 8/20 (40.0%) 12/108 (11.1%)
HCT116 13/27 (48.1%) 14/101 (13.9%)
HT29 67/81 (82.7%) 14/47 (29.8%)

Total 88/128 (68.8%) 40/128 (31.2%)

(f) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 8 4 8
HCT116 5 13 9
HT29 4 10 67

(g) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 2/20 (10.0%) 18/108 (16.7%)
HCT116 6/27 (22.2%) 21/101 (20.8%)
HT29 52/81 (64.2%) 29/47 (61.7%)

Total 60/128 (46.9%) 68/128 (53.1%)

(h) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 2 8 10
HCT116 6 6 15
HT29 7 22 52
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Table C.19: MISP-Multi

(a) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 12/20 (60.0%) 8/108 (7.4%)
HCT116 14/27 (51.9%) 13/101 (12.9%)
HT29 74/81 (91.4%) 7/47 (14.9%)

Total 100/128 (78.1%) 28/128 (21.9%)

(b) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 12 5 3
HCT116 5 14 8
HT29 1 6 74

(c) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 8/20 (40.0%) 12/108 (11.1%)
HCT116 8/27 (29.6%) 19/101 (18.8%)
HT29 69/81 (85.2%) 12/47 (25.5%)

Total 85/128 (66.4%) 43/128 (33.6%)

(d) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 8 7 5
HCT116 8 8 11
HT29 3 9 69

(e) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 8/20 (40.0%) 12/108 (11.1%)
HCT116 16/27 (59.3%) 11/101 (10.9%)
HT29 69/81 (85.2%) 12/47 (25.5%)

Total 93/128 (72.7%) 35/128 (27.3%)

(f) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 8 5 7
HCT116 1 16 10
HT29 4 8 69

(g) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 2/20 (10.0%) 18/108 (16.7%)
HCT116 11/27 (40.7%) 16/101 (15.8%)
HT29 59/81 (72.8%) 22/47 (46.8%)

Total 72/128 (56.2%) 56/128 (43.8%)

(h) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 2 6 12
HCT116 3 11 13
HT29 8 14 59
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Table C.20: MISP-MultiC

(a) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 8/20 (40.0%) 12/108 (11.1%)
HCT116 15/27 (55.6%) 12/101 (11.9%)
HT29 69/81 (85.2%) 12/47 (25.5%)

Total 92/128 (71.9%) 36/128 (28.2%)

(b) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 8 4 8
HCT116 1 15 11
HT29 4 8 69

(c) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 4/20 (20.0%) 16/108 (14.8%)
HCT116 9/27 (33.3%) 18/101 (17.8%)
HT29 62/81 (76.5%) 19/47 (40.4%)

Total 75/128 (58.6%) 53/128 (41.4%)

(d) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 4 5 11
HCT116 1 9 17
HT29 4 15 62

(e) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 7/20 (35.0%) 13/108 (12.0%)
HCT116 13/27 (48.1%) 14/101 (13.9%)
HT29 66/81 (81.5%) 15/47 (31.9%)

Total 86/128 (67.2%) 42/128 (32.8%)

(f) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 7 2 11
HCT116 3 13 11
HT29 4 11 66

(g) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 2/20 (10.0%) 18/108 (16.7%)
HCT116 3/27 (11.1%) 24/101 (23.8%)
HT29 47/81 (58.0%) 34/47 (72.3%)

Total 52/128 (40.6%) 76/128 (59.4%)

(h) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 2 4 14
HCT116 3 3 21
HT29 7 27 47
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Table C.21: SHD-MultiC

(a) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 10/20 (50.0%) 10/108 (9.3%)
HCT116 12/27 (44.4%) 15/101 (14.9%)
HT29 68/81 (84.0%) 13/47 (27.7%)

Total 90/128 (70.3%) 38/128 (29.7%)

(b) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 10 7 3
HCT116 7 12 8
HT29 3 10 68

(c) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 5/20 (25.0%) 15/108 (13.9%)
HCT116 3/27 (11.1%) 24/101 (23.8%)
HT29 65/81 (80.2%) 16/47 (34.0%)

Total 73/128 (57.0%) 55/128 (43.0%)

(d) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 5 11 4
HCT116 12 3 12
HT29 3 13 65

(e) Classification statistics (1-NN)

Class True Positives (%) False Positives (%)

DLD-1 9/20 (45.0%) 11/108 (10.2%)
HCT116 8/27 (29.6%) 19/101 (18.8%)
HT29 66/81 (81.5%) 15/47 (31.9%)

Total 83/128 (64.8%) 45/128 (35.2%)

(f) Confusion table (1-NN)

Class DLD-1 HCT116 HT29

DLD-1 9 7 4
HCT116 8 8 11
HT29 1 14 66

(g) Classification statistics (2-NN)

Class True Positives (%) False Positives (%)

DLD-1 6/20 (30.0%) 14/108 (13.0%)
HCT116 2/27 (7.4%) 25/101 (24.8%)
HT29 60/81 (74.1%) 21/47 (44.7%)

Total 68/128 (53.1%) 60/128 (26.9%)

(h) Confusion table (2-NN)

Class DLD-1 HCT116 HT29

DLD-1 6 9 5
HCT116 9 2 16
HT29 2 19 60
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D.1 Treated Group (Nocodacole)

Figure D.1: Treated Group DLD (Nocodacole)

Figure D.2: Treated Group HCT116 (Nocodacole)
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Figure D.3: Treated Group HT29 (Nocodacole)
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D.2 Control Group (DMSO)

Figure D.4: Control Group DLD (DMSO)

Figure D.5: Control Group HCT116 (DMSO)

Figure D.6: Control Group HT29 (DMSO)
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D.3 Data sets

(a) DLD1 STK15 1 40x (b) DLD1 STK15 1 DMSO 40x

(c) DLD1 STK15 2 40x (d) DLD1 STK15 2 DMSO 40x

(e) DLD1 STK15 3 40x

Figure D.7: Raw images of DLD1 cells.
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(a) HCT116 STK15 1 40x (b) HCT116 STK15 1 DMSO 40x

(c) HCT116 STK15 2 40x (d) HCT116 STK15 2 DMSO 40x

(e) HCT116 STK15 3 40x (f) HCT116 STK15 huebsch DMSO 40x

Figure D.8: Raw images of HCT116 cells.
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(a) HT29 STK15 1 40x (b) HT29 STK15 1 DMSO 40x

(c) HT29 STK15 2 40x (d) HT29 STK15 2 DMSO 40x

(e) HT29 STK15 3 40x (f) HT29 STK15 4 40x

(g) HT29 STK15 5 40x (h) HT29 STK15 6 40x

Figure D.9: Raw images of HT29 cells.
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