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Zusammenfassung

In dieser Diplomarbeit werden neue Verfahren zur Detektiod Klassifikation von Ob-
jekten in Mehrkanal 3D Aufnahmen vorgestellt. Fir die Dé&tkvon Objekten wurden
neue Bildfilterungsverfahren entwickelt, die es ermoglitian Hand von Trainingsdaten
eine an das zu detektierende Objekt angepasste Bildfijedturzufiihren. Die entwick-
elten Bildfilterungsverfahren kénnen auf beliebig vielean&len eingesetzt werden. Um
in einem zweiten Schritt die detektierten Objekte zu vaafin wurden bereits bewahrte
Merkmale zur 3D Objectkerkennung auf 3D Mehrkanal Aufnahreeveitert.

Die entwickelten Verfahren wurden erfolgreich auf Zeltkmén von kolorektalen Karzi-
nomen zur Detektion von aberranten Mitosen eingesetzt.

Abstract

The present diploma thesis introduces new approachesdatetiection and classification
of objects in multi-channel 3D data sets. For the detectfarbfects new image filtering
techniques were developed. Based on given training dayatiuev for an image filtering
which is adapted to a specific object. The image filtering ilgms can be deployed on
an abitrary number of channels. To verify detected objexttablished features for the
recognition of 3D objects were extended to multichannel aadets.

The present methods were successfully used for the detesftiaberrant mitoses in cell
cultures of colorectal carcinomas.
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1 Introduction

In our society cancer diagnosis are constantly increasmgroved methods for detection
and guantification of individual cellular and genetic abgons need to be fully established
as supplementary tool to classical histomorphologicalyasig Automated three dimensional
imaging methods are expected significantly to improve t&dsiandards of histopathology
and molecular pathology. In particular, quantitative napéirametric three dimensional as-
sessment of candidate molecular markers in the contexnodu cells within routinely pro-
cessed tissue specimens will be a crucial task to significanprove prognostic and predic-
tive pathology.

For example the development and progression of coloreatadar is determined by several
pathways of genetic instability, such as chromosomal sty microsatellite instability and

a methylation-related instability. Alterations in thesngtic pathways and mutations of spe-
cific genes within the evolving tumour cell population cdmite to tumour cell invasion and
metastasis, and the aggressiveness of the disease. Theutaokspects of tumour cell biol-
ogy are of primary importance for individual patient progisoand the therapeutic response
to current therapeutic strategies.

-
*

Figure 1.1: Overlay of FITC and DAPI channels of a colorectaicer cell.
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The main goal of the current work was to detect and classitptiicells in tissue samples
of colorectal cancer. Therefore we will introduce new teghes in the area of multi-channel
image (see figure 1.1) filtering and feature extraction mitho

Detection of objects in images is one of the fundamentalstaskmage processing. How-
ever, the variety of objects and image acquisition pararsetekes this process not trivial.
There are many types of filter based feature detectors fes lamd corners [FY91] [AJUO5]

[YLZWO06] but only very few have the ability to learn the objsof interest in a generic way
[SMH98] [Rei09]. Many approaches are model based such asldligh transform and in-

volve a previous segmentation of objects [RWBO08][S8&. For multi-channel images most
algorithms are only addressed to 2d problems [Cyg05].



2 Introduction

1.1 Outline
This work is organised as the following.
Chapter 2 will give brief introduction on the biological angkdical background.

In chapter 3 we will give the theoretical background neededriderstand most concepts of
the following chapters.

Chapter 4 introduces the concept of harmonic filters. We extend the concept to multi-
channel data.

Chapter 5 gives a brief introduction on the theory of steleréiliers in 3D. Since steerable
filter are a state of the art concept in image filtering in maojgct and feature detection tasks,
this was the main reference for our techniques developekapter 4.

In chapter 6 we will discuss various feature extraction rméghwith regard to multi-channel
data.

In chapter 7 we will present the results of our experiments.

And finally chapter 8 will complete the current work by summsizig and discussing the in-
troduced concepts and giving an outlook on how to solve antshg problems.



2 Biological Background

In this chapter we want to present a brief overview of thedgalal background needed to
understand the purpose of the presented work. First, weowdline the cell division cycle in
order to understand what the main biomedical interest ofaauk is. This will be presented
regarding healthy cells. Furthermore, we give a brief dpon of aberrant cells in section 2.2
on page 5, which we later want to distinguish from healthyscélell division requires the in-
teraction of a multitude of proteins, regulating entry ittte individual phases of the cell cycle
(see figure 2). In particular, protein kinases transferinggphate groups from one protein to
another, and thereby leading to their activation, are d¢sdéor proper cell cycle progression.
Recently the Aurora-family of kinases have been identifeeglety a major role in the cell
cycle.

Three Aurora kinases have been identified: Aurora A (alsaswknas STK15), Aurora B and
Aurora C. Coordinate events for the positioning of the twmdle poles and the alignment
of chromatids are regulated via Aurora A and Aurora B kingsespectively. Clearly, distur-
bance of these coordinate events will lead to cell cycleudistnces and may be involved in
development of chromosomal unstable cells, as seen in naaligransformation and several
cancer entities.

Since the main research interest of our project partnersurerd A, we will neglect other
Aurora kinases and focus on Aurora A.

Aurora A is working during prophase (see figure 2.1 on the page) and is required for the
correct function of the centrosomes which serve as the mairotabule organising centre.

centrosome

intact
nuclear
envelope

forming
\ . Mmitotic
. % spindle

|
1
|

kinetochore =
— condensing chromosome
with twao sister chromatids
held together along their length

Figure 2.1: Prophase of a cell.

During the prophase of mitosis, the centrosomes migratgpmsite poles of the cell. The
mitotic spindle then forms between the two centrosomes.nUpiaision, each daughter cell
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receives one centrosome. Aberrant numbers of centrosoma=il have been associated with
cancer.

2.1 Cell Division and the Cell Cycle

The process of mitosis can be divided into six phases asteepicfigure 2.1. These six stages
are known as prophase, prometaphase, metaphase, andplugggse and cytokinesis.

INTERPHASE
Gz
6 CYTOKINESIS 1 PROPHASE
CELL
CYCLE
5 TELOPHASE 2 PROMETAPHASE 1
4 ANAPHASE 3 METAPHASE
M PHASE

Figure 2.2: Overview of the cell cycle.

During mitosis, a mitotic spindle is assembled by using otigoules to tether together the
mother centrosome to its daughter. The resulting mitoticdip is then used to propel apart
the sister chromosomes into what will become the two new ki@ugells.

Aurora A is critical for proper formation of the mitotic sgte. It is required for the recruit-
ment and activation of severalftirent proteins important to the spindle formation. Without
Aurora A the centrosome does not accumulate the quantiytabulin that normal centro-
somes recruit prior to entering anaphase. Finally, Aurotzelps to orchestrate an exit from
mitosis by contributing to the completion of cytokinesise fprocess by which the cytoplasm
of the parent cell is split into two daughter cells. Duringal§inesis the mother centriole
returns to the mid-body of the mitotic cell at the end of m#aand causes the central micro-
tubules to release from the mid-body. The release allowssisito run to completion.
Furthermore, Aurora A is also involved in the dynamics oftoesome maturation and their
migration to form two opposite located spindle poles.

Aberrant high expression of Aurora A has been associatdd supernumerary centrosomes
and multipolar spindle poles during cell division of cancells. High levels of Aurora A have



2.2 Cancer Cells and Aberrant Mitosis
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Figure 2.3: Six diterent cell division stages.

been observed in colorectal cancers, especially in thodeamar subgroups of colorectal
cancers that display chromosomal instability (see [GK¥],[LWM*07]and [LKS 09]).

2.2 Cancer Cells and Aberrant Mitosis

Aurora A dysregulation has been associated with a high oecae of cancer. Dysregulation of
Aurora A may lead to cancer because Aurora A is required ®ctmpletion of cytokinesis.

If the cell begins mitosis, it duplicates its DNA, but is thewt able to divide into two separate
cells, it becomes an aneuploid and contains more chromastime normal. Figure 2.4 on
the next page shows a few examples of aberrant mitosis bMle examples can be found in

appendix D.1 on page 82.
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Figure 2.4: Examples of highly aberrant mitotic cells oethdiferent identified cancer types.

2.3 Cell Lines

Cell lines are distinct families of cells grown in cultureel@ in the same line are typically
clones. Diterent cell lines have fferent features which are useful in molecular biological
applications. We used images of the following three cebdiriseénttp: //www.biotech.
ist.unige.it).
e HCT 116:
Morphology: Epithelial-like
Species: human male
Tissue: colon
Tumour: carcinoma
Depositor: obtained from ATCC Properties: expressing keta metabolising en-
zymes; producing carcinoembryonic antigen
e DLD-1:
Morphology: Epithelial Human colon adenocarcinoma
Depositor: Obtained from ATCC, USA
Derived from human colorectal adenocarcinoma. The celg h&en used in the
study of polar solvents on cell characteristics.
e HT 29:
Morphology: Epithelial

Human Caucasian colon adenocarcinoma grade Il
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Isolated from a primary tumour in a 44 year old Caucasian fenteorms a well-
differentiated adenocarcinoma consistent with colony pringmade |. Tumours also
form in steroid treated hamsters.






3 Preliminaries

This chapter presents the theoretical background needeulitrstand the following chapters.
Until a few exceptions we passed on most of the proofs ornedeio its source. Most of the
definitions and theorems where invented in [RB09] and [Rleg®®@l the interested reader is
referred to these sources.

We will begin with a very basic definition.

Definition 3.0.1 (Equivariant Mapping) A mapping f between two set X and Y is called
equivariant if f commutes with the group action of a givenugr§.

f(g-x)=g- f(X), Yge Gand xe X
Or in other words, f is an equivariant mapping if the follogidiagram commutes for every
ge§:

g
—_—

<<—X

X
lf
Y

g : 9x X - X, (g, X) — gx denotes the group action §fon X (for Y respectively).

r——
g.

We will later need the following vector space definition.

Definition 3.0.2(The vector spac¥;). We define Yas the compIeXJ + 1 dimensional vector
space represented I&#!*1. The standard basis of)\s written ase), form=—j,.. ., j.

Elements olv; are written in bold face, e.g.€ V;, and the 2 + 1 components of in unbold
facevy, € C, wherem = —j,..., ]. We treatV; as a real vector space of dimensiop+21,
despite the fact that the components@hight be complex. This means thétis only closed
under weighted superpositions of real numbers. Theretmmmponents ofi € V; fulfil the
propertyt, = (—1)"u_n. The corresponding "imaginary” space is denoted\gsWe write
the elementsv € iV; asw = iv, whereass € V;. Analogue to elements df;, the elements
w € iV, fulfil always Wr, = (—1)™w._n,. Hence the whol€?/*! can be written as the direct
sum of these two spac€®*! = V; @iV;.

Letr = (x,y,2)" € R® be the standard coordinate vector. One can reldtethe complex
valued spherical coordinatec V; in an unitary way:

10-iy) ) (W
u= z =| z |=SreV,,
—%(x+ iy) -w
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whereasv = x + iy. Sis an unitary coordinate transformation given by the matrix

N
S=—|0 0 V2 (3.1)
V2|1 i o

3.1 Irreducible Representations of Elements of  SO(3)

The representation of a grogas a mapping of the elemengs= G onto a set of matricel3(g)
of dimensiond, such that the product rule still holds (group homomorphism

D(9:92) = D(9:)D(9y) -
We will need the definition of irreducible representatiohslements o50(3).

Definition 3.1.1 (Wigner D-matrices and the vector spa¢g. Let Dé be the irreducible rep-
resentation of elementsggSO(3) that act on the vector spacg VThe representatior@é are
unitary

(D))'D) =1

The Dé are called the Wigner D-matrix. The component@éfare writtenD)y,
The relation betweebj and the real valued rotation matii}, € R>® is given by

D = SU,S'

for Saccording to equation (3.1).

3.2 Spherical Tensor Analysis

In this section we will give all basic definition and theorewtsich are essential for spherical
tensor analysis.

Definition 3.2.1(Spherical Tensor Field\We call a functiorf : R®* — V; a spherical tensor
field of rank j if it transforms with respect to rotations as

(g-)(r) := D} (Ugr) (3.2)
for all g € SO(3). The space of all spherical tensor fields of rank j is deno®f;a
The next definition will give us a basic tool for combining sens of diterent ranks.

Definition 3.2.2(Spherical Tensor CouplingJor j > 0 we define a family of bilinear forms
of type
0j 1 Vi, X Vj, =V,
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whereas 4§, j» € N have to be chosen according the triangle inequality
Ji—Jel<j<ji+]z (3.3)
Forv e Vj, andw € Vj,, v o; wis defined by
(€)(vojw) = Z (Jm| jama, j2Mp)Vim, Win,
m=my+mp
whereas jm| j1my, jom,) are the Clebsch-Gordan cigients.

This is just the ordinary angular momentum coupling knowrguantum mechanics (see
[Ros95] and [Tin04]). Note that the Clebsch-Gordanfioents(jm | j;my, j.my) are only
non zero fom = m; + m,. The most important and useful property of the above defined-p
ucts is that they respect the rotations of their argumenéswW make use of this property in
the following chapters. The following proposition will makhis clear.

Proposition 3.2.1.Let j;, j», ] € N be chosen according to the triangle inequality (3.2). For
anyv € Vj, andw € Vj, and ge SO(3) holds

(Dg}v) o (Dgfw) =D) (v o W)
Proof. See [RB09] and [Rei07] O

We will present some other useful properties of the proddetmed by definition 3.2.2.

Proposition 3.2.2.Let j;, j», ] € N be chosen according to the triangle inequality (3.2). If
j + Jj1+ J2is even, ther; is symmetric and antisymmetric otherwise. The spgds Mosed
under symmetric products but not for antisymmetric prosli€hen we have for € V;, and
W e ij

j+j1+]2iseven= vo;w eV,

j+ 1+ j2isodd= vojweiV,
Proof. See [RB0O9] and [Rei07] O

Definition 3.2.3 (Normalised Symmetric Productsifor j > 0, |j1 — jo| < j < j1 + j2 and
j + j1+ j2 even, we define a family of symmetric bilinear fomnsV;, x V;, — V; by

1

VeW.=—F Vo, W
: (jO[ ji10, j.0) ~

Note that(jO | j;0, j20) are only non zero fof + j; + j, = even.
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There are some special cases which we will now summarise.

For e the arguments have to be of the same rank in order to fulfilrtaedle inequality, e.qg.
V,W € V. In this case coincides with the standard inner product:

VeoW = Z (=1)™Wem = W'V .

Forj=j,andj; =0, e.g.v e Vyandw € Vj, e reduces to the standard scalar multiplication:
VejW=\VoWw.

The following has found to be very useful in the context of tachannel image filters.
Forj=j;=j,=1andv=Sh w=SceV,;andb, ce R?it holds

—i(Vorw) = %S(b X C) (3.4)

x denotes the cross product.

Proof.

2 1=mpmp${1 = 1| 1My, 1Mp)Vim, Wi,
_i(V o1 W) = i ZO:m1+mz<10 | 1m1’ 1m2>Vm1Wm2
Zl=m1+m2<11 | 1m1’ 1m2>Vm1Wm2

(1-1]1-1,10V_Wo +{(1—1]10,1— L)vow 4
= —i|  (10]1-1,1vqw; +{10] 111 Lyvyw ,
(111 10, 11vgw; + (10| 11, 10)vawp

L

\:{E V_1Wp + \:{EV()W_]_

= — \/EV_1W1+ \/EV:LW_]_

_1 'y
\/EVOW]' + \/EV]'WO

7 ((=bx +iby)c; + by(cx —ic)))
= ——=| 3((-be+ib)(-cx—icy) + (-by —iby)(cc — i)

-1

\& L(=by(~Cc i) + (~by — iby)cy)
[ (bt = bica) +ilbye; - biey)
= —— |(bey - byCX)

V2 5((=0xC; + b&y) +i(=byc; + byCy))

(byc, — bycy) —i(bcy — bycy)
V2(b,c, - bycy)
_(bzcy - bycz) - i(bzcx - bez)

1 byCZ - bZCy
= —S szx - bsz
bey - byCX

_ Ls (b x ©)

V2
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O

The previously introduced products are giving us the abititnot only coupling tensors of
different, but also coupling tensor fields oftdrent ranks.

Proposition 3.2.3.Letv € T, andw € T}, and j& N be chosen such thiit, — jo| < j < ji+i2
then

f(r) :=v(r) oj w(r)
defines a tensor field of rank j, i.ee 7]

Proof. Since we haver/(r) € V;, andw(r) € Vj,, we know that Y(r) o; w(r)) € V;. Since

J2r

this holds for allr € R? and the properties af;, we have thatyo; w) : R® — T}, defines a
spherical tensor field. |

Tensor fields can also be combined by convolution, which & proposition will show.
The advantage of combining tensor fields by convolutiorhiat the so defined "convolution”
products also respect translation in a certain sense.

Proposition 3.2.4.Letv € T}, andw € T}, and j be chosen such thgt — jo| < j < j1 + j2,
then

(Vow)(r) := f3 v(r' =r) oy w(r’) dr’
is in Tj, i.e. atensor field of rank |. )
Considering the behaviour of ando; under a translation
(7f)(r) = f(r - t.),

leads to the following two relations:

(Tv) oj (Tw) T(V o] W) (3.5)
Voj(tw) = (7V)o;w = 7(Vo;w) (3.6)

3.3 Spherical and Solid Harmonics
We denote the spherical harmonics by
Yj . 82 — Vj .

We write Y1(r), wherer may be an element @&?2, althoughY!(r) is independent of the mag-
nitude ofr. This has the advantage that we can interpret them as sahiemsor field.

We know that theY! provide an orthogonal basis of scalar functions on the 2w®?. Thus,

any real scalar field € T, can be expanded in terms of spherical harmonics in a unique
manner. One important and useful property is that Yt ; Yiz. We can use this formula

to iteratively compute higher ordéf! from given lower order ones. Note th¥f = 1 and
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Y1 = Sr, wherer € S2,
Another important property that eadfi, interpreted as a tensor field of rafks a fix-point
with respect to rotations, i.e.

(gY)(r) = Y(r), for all g € SO(3) (3.7)
or in other words¥ 1(Ugr) = DJYi(r).

The spherical harmonics naturally arise from the solutioms the Laplace equation as the
so called solid harmonics _ o
RI(r) :=rlY!(r)

The generalisatioR!(r) := ri*'Yi-(r) is a complete basis for the analytical functidngr?).

Note that the fix point property also holds for the solid hanms.

3.4 Spherical Derivatives

We will later need the concept of spherical derivatives @ harmonic filter framework.

Proposition 3.4.1(Spherical Derivatives)Let f € T; be a tensor field. The spherical up-
derivativeV? : J; — Tj.1 and the down-derivativ®, : T; — Tj_; are defined as

Vi = Vef (3.8)
Vlf = V.j_lf, (39)
where
Y = (<L (9 = 18,). B — (0 + 16))
\/é X y)s Y2 \/é X Y.

is the spherical gradient andk, dy, 9, the standard partial derivatives.

Proof. We have to show tha&'f € T4, i.e.
VH(D/f(Ugr)) = DH(VH)(Ugr)
andVlf S (.Tj_]_ ' '
V1(D)f(Ugr)) = Dy H(V4f)(Ugr)
Both statements are proved just by using the properties of O

Note. Forf € T, the spherical up-derivative is just the spherical gradint Vf. A con-
secutive application of up- and down-derivatives foe Tg is equivalent with applying the
Laplace operator:

V.V = Af

In the Fourier domain the spherical derivatives act by puiise e-multiplications with a solid
harmonicikY!(k) = iR'(k) = iSk wherek = ||k|| denotes the frequency magnitude:
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Proposition 3.4.2(Fourier Representation).etf(k) be the Fourier transformation of sorfie
J; andV representations of the spherical derivative in the Foudemain that are implicitly
defined by(Vf) = Vf, then

vV T(K)
V.f(K)

iRY(K) o741 F(K) (3.10)
iRL(K) o_1 f(K). (3.11)

Proof. By using the ordinary Fourier correspondence of the peuitiaaik/ative,(”j’sxilc = ik, we
can verify for the spherical gradieRtthat

V = iSk = iRY(K)
and hence . L N
Vi = (Verif) = Ve f = iRYK) o f
which was to be shown (see [Rei07]). O

Equation (3.10) and (3.11) are direct consequences of thedfa@orrespondences for the or-
dinary partial derivatives.

The generalisation higher orders is only true for scalad$ielnd is presented by the next
proposition.

Proposition 3.4.3(Multiple Spherical Derivatives)For n > i we definev? : 7o — T, by

V' =VV'=V,...V;V} .V
N—— T

i—times n-times
In the Fourier domain these multiple derivatives act by
(ViHk) = O™ R(K) (k). (3.12)
Using this one can show th&" = V"'A’, whereA is the Laplace operator.
Proof. See [Rei07] |
We will later need the following commuting property for cafutions.

Proposition 3.4.4(Commuting Property for ConvolutionsjetA € T, andB € T; be arbi-
trary spherical tensor fields then

(VIA)e)B = A'%(V,B) (3.13)
(VIA)o. B = A9 (VB) (3.14)

where J=j-((+K)and L= ]+ + k.

Proof. See [RB09] |
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3.5 Spherical Gaussian Derivatives

This section summarises the most important relations oérsgdl derivatives Gaussian func-
tions.

Proposition 3.5.1. The Gaussian windowed harmonic of widths defined as

. 1 (—r\ . 2
Gl(r):= —(0_—2) Yi(r)e 272,

g3
then, the Fourier transformation @(r) is given by

((rk)2

Vi) = (""", Gi(r)), = (K)!Yi(k)e

The following corollary will show that th&! are just thej-th order spherical derivatives of a
Gaussian.

Corollary 3.5.1 (Homogenous Spherical Gaussian DerivativE)e homogeneous spherical
derivativeV'’ of a Gaussian is given by

2 . 1\ 2
Viezz = o%Gl(r) = (——2) RI(r) e 22
g

a2
202

_ 1

= =7 C |
This also implies that for smadt the inner products with sud®.. tend towards the derivative,
meaning

We use the conventio@? = G,

o—0

(DG D, =3 (V1) g

for somef € T,. Another implication is that convolutions with tr@(j, are derivatives of
smoothed functions

Corollary 3.5.2 (Smooth Derivatives)Let f € Ty be a scalar-valued tensor field, then it holds

Gl f =V,

r2 - - -
where =G, « f = %e‘ﬂ x T is the Gaussian-smoothed tensor field.

Proof. Using associativity and commutativity of convolutionseithin the Fourier domain
holds:

GL.T ((ik)ivi(k)e-#) f

(K)IYI(K) (eﬁf‘) _V'T.

—_——

fs

Which proves the assertion. O



4 Tensor Voting and Harmonic Filters

This chapter introduces the theory $(3)-equivariant non-linear filters for generic feature
and object detection [Rei09]. The goal is to build non-lnieaage filters that are equivariant
to Euclidean motion. It is in principle the 3D analogy to tHeefideveloped in [RB08] for the
2D case.

In section 4.1 we will give some basic definitions and give ranoduction to the harmonic
filter as developed in [Rei09]. Section 4.2 on page 19 wilegan alternative formulation of
the harmonic filter based on spherical derivatives (see B3 dage 14) that will lead to a fast
implementation. In section 4.4 on page 24 we will give an esi@n to the harmonic filter
that makes it possible to use higher order tensor fields ag topthe filter. In section 4.5
on page 25 we will show how to extend harmonic filters to mei@annel input, and finally
in section 4.6 on page 27 we will show how to extend the filtgopathm by making use of
antisymmetric tensor products.

4.1 Harmonic Filters

Let us begin with the definition of &E(3)-equivariant image filter.

Definition 4.1.1 (SE(3)-Equivariant Image Filter)An image filterF is a mapping front;,
onto7j,. Such a mapping is calleSlE(3)-equivariant ifF{gf} = gF{f} for all g € S §3) and
fe le.

In case of the harmonic filter we will focus on tensor fiefds T, (scalar fields) and elements
of T, (vector fields, see section 4.4 on page 24). Hence we will gigpecialised definition
of 4.1.1.

Definition 4.1.2(SE(3)-Equivariant Scalar Image FilterA scalar image filteF is a mapping
from T, onto Jo. Such a mapping is calle8E(3)-equivariant ifF{gf} = gF{f} for all g €
SHK3)and f e To.

The harmonic filter algorithm can be divided up into thregste
First, compute for each position in the 3D space the prajaainto the Gaussian windowed
harmonic basiss), for j = 0,...,n. This is achieved by calculating the convolution of the

imagef with the harmonic basis _ '
pl =Gl «f (4.1)

The set of projectionp’ can be interpreted as a kind of local descriptor images, eviies
set of p(r), pi(r),..., p"(r)] of codficients describe the harmonic part of the neighbourhood

17
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of the voxelr. Note that the resulting projectiops are elements df; and as a consequence
pi(r) € V;.

Secondly, for each voxel these projections are mapped onte siew harmonic descriptors

N!(r) := N[p(r), p(r), ..., ()] (4.2)

which can be interpreted as a local expansion of a kind ohgofiuinction that contributes
into the neighbourhood af The voting function is chosen as a Gaussian-windowed haitno
function (see [Rei09]) and therefore the contribution @& Woter at voxet’ to positionr is :

Ve (r)

Gy(r = 1") Y (NI(")TRI(r - 1)

i=0

= G,(r —r’)ZNj(r’)ooRj(r —r). (4.3)
j=0
The third and final step is to collect the contribution frorhpakelsr’ in an additive way
F{f}(r) := f V. (r)dr’
R3

> [ G = rNIE) R - 1)
j=0 VE
Zf Gl(r —r") e Ni(r)
=0 VR

= GJ &N (4.4)
j=0

> |

Before we go into further details, we have to show that a filtefined by equation (4.4)
is a filter in the sense of definition 4.1.1 on the previous pagerder to ensur&SE(3)-
equivariancelN’[-] has to fulfil the following definition:

Definition 4.1.3 (SE(3) equivariant mapping)A mappingN’ : Vo X - -+ x V, — V; is called
equivariant if it behaves as

N'[Dgp®.....Dgp"| = DIN' [p° ..., p"]

It is obvious that shifting by 7 results in shifted descriptogs
Gl x (rf) =7(G) « f) = p’
SinceN! is working in a point-wise manner it holds for any translatio

NI[p°, ..., 7p'] = «NI[p°,...,p]
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And finally, reconsidering equation (3.6) leads to the fwllty
G) % () = 7(G}  N')

and proves the translation-equivariance.
We know from section 3.5 on page 16 tt@} are fix points with respect to rotations. The
descriptor imagep’ are spherical tensor fields of ordgbecause we have

Gl +(9f) = 9(G * )

Hence N![p®,...,p!]is also a spherical tensor field of ordjer
Finally, using the fix point property oB) and proposition 3.2.4 on page 13, we have that
F{f} € To which proves the rotation-equivariance.

4.2 Differential Formulation of the Voting Function

We will use the spherical produet as the basic building block for the equivariant non-
linearitiesN![-]. We define the non-linear voting functidw/[-] as the sum of second order
descriptor imagep!

NI [p°....p" = Z ol ptejp? (4.5)
lig-ial<isiz+iz
I1+ig+jeven
J1.J2=n

wherea}”z € R are expansion cdicients. The order of the filter is defined as the order of
product involved irN![-] and is denoted biN. The computational most expensive parts of the
filter given by equation (4.4) are the convolutions. On the band, one has to compute the
projection onto the harmonic basis of the input image by obrtion. On the other hand, the
final collection step of all voters is done by convolution.
Reconsidering corollary 3.5.2 on page 16 shows that thexeather way to compute projec-
tions onto the harmonic basis: by the use of the sphericalatete (see 3.4 on page 14).

Furthermore, we know from the commuting property for contiohs (see proposition 3.13
on page 15) that

n n
Y GlmN = Y(ViG) %N

=0 j=0
n .
= ) G, % (V;N))

j=0

n
G, * ZVij
=0
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We can reformulate the filter of equation (4.4) and give thelféaefinition of the Harmonic
Filter:

n
H{f} =G, x ) VNI[VOf,,..., V"f] (4.6)
i=0

with fs = G, = f as in corollary 3.5.2 on page 16.

Algorithm 1 gives the computation of the filter in pseudo coa¢ation. Note, that we just
have to compute spherical derivative¥* if we implement them by repeated applications
(see proposition 3.4.3 on page 15 for details). Actuallystém@e holds for the down-derivative
V. if we follow Algorithm 1. In Figure 4.1 on the next page we 8luate the workflow of the
filter.

Algorithm 1 Harmonic Filter Algorithm
Input: f:R3 >R
Output: y:R3 > R,y := H{f}
1: Initialisey" := 0 € T,

// compute projection onto harmonic basis
Convolvep? := G, = f
for j=1:ndo

pJ = lej—l
end for
// compute harmonic descriptors
for j=n:-1:1do

yl= Vl(yj + N [po, : ..,pj])
end for
Lety :=y%+ NO° [po, s pj]
// collect the contribution of all voters
10: Convolvey := G, xy

Depending on the application they may or may not depend omltselute intensity values
of the input image. To become invariant against additiverieity changes one leaves out the
zero order descriptq?®.
For robustness against illuminatjoontrast changes we introduce a soft normalisation of the
first order descriptop?:
1 1

p*(r) - Sdev(r)v f(r), 4.7)
wherey € R is a fixed regularisation parameter aggd(r) denotes the standard deviation
computed in a local window arourrd The normalisation makes the filter robust against mul-
tiplicative changes of gray values. The filter has threermgplaeameters: the expansion degree
N, the width of the input Gaussianand the output Gaussian
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@ af |
= H{f) -
v @/{,,(D

Q22
1

fa.%’)’”}, O—— =0 @?_ﬂ. ”
Go‘ E N(LVI G"’?

@

Figure 4.1: Workflow of the harmonic filter algorithm.

The parameter determines the size of the local features that vote for thee®f the object
of interest. To assure that every pixel of the object canrdmute to the output, the extentof
the voting function should be at least half the diameter efdbject.
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4.3 Training: Finding Optimal Filter Parameters

In order to find the filter cao@cientsa, we follow a linear least square fit. Suppose we want to
train the filter for one input imagé € T, then we have to minimise the following expression

J@) = IIL —H{fyP

whereL is our label image, which contains ones at positions wherevarg high response of
our filter, and zeros otherwise. Suppose our input imagevengdy its matrix representation
f e RMmxmxms \We write thek-th computed feature in algorithm 1 on page 20 as

f = vec(G,7 «V, (p™ e p! )) € RM MM

whereF is k-th computed feature in algorithm 1 on page 20 written asoredissuming that
we calculaten feature images, we can define the matrix

F = (fl, RN fn) c R(ml-mz-m;;)Xn

Then we have thatec(H{f}) = > axfx and optimise the following expression

J(@) Ivec(L) — vec(H{f}) 7

livec(L) — Z arfull?
K

The optimalxy values arise from solving the normal equations:

a = (F'F)YFTvec(L)
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Algorithm 2 Harmonic Filter Algorithm (Training)

Input: fi:R3 = R,i=1,..., M, training examples
Input: L;:R®—{0,1},i =1,..., M, corresponding label images
Input: (m, j, £) € N3, tuple list of wanted products
Output: a € RN, filter codficients (N = #tuples in product list)
1: Initialise F := {}
2: InitialiseL := {}
// compute projection onto harmonic basis
3:fori=1:Mdo
4:  Convolvep? := G, * f;
5. forj=1:ndo
6: pil = Vipl
7. end for

// compute local descriptors and collect
for all (m, j, £) € productsdo
fk=G,« V. (p e )

10: F = {F, vedfy)}
11: L :={L,vedL;)}
12: ki=k+1

13:  end for

14: end for

// linear least square fit
15: LetC:=F' F
16: Letb := FT veqL)
17: SolveCa=Db
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4.4 Higher Order Tensor Fields

In this section we want to examine generalisations of thebaic filter to higher order tensor
fields for input as well as output. We will give an applicatfon higher order input at the end
of the current section.

The generalisation to tensor-valued input and output iseddvery simple. One has to con-
struct a filter of typeF : T, — Tj, in the sense of definition 4.1.1 on page 17. According
to the formulation we gave in section 4.2 on page 19 in ordeotopute the projection onto
the harmonic basis, we can compute the descriptor imagestgher order input € 7;, as
before byp! = V/(G,,  f). The diference is that the resulting descriptor images have higher
ordersp’ € Tj,j,.

We also have to adjust the local non-linear mappiNgs to
N’ 70+J'1 X X Tnﬂ'l - Tiﬂl

Actually, we can use the same formulation as in equatior) {d.8ap the local non-linearities
onto the output.

For getting higher order output one has to stop the loop & @rof algorithm 1 on page 20
at the desired output order. It is clear that only prodectsf orderj > j; can be computed,
when j, is the desired output order. One also has to have in mindthieataining gets even
more complicated: one has to give higher order label imagésining. A possible applica-
tion of higher order output, e.g. for a filter of type: T;, — T3, could the prediction of local
orientations, e.g. the orientation axis of the centrosoofi@s(healthy) mitosis cell.

As mentioned above we will give an application of a filter gy : T, — To, which we will
define as the following:

Definition 4.4.1 (SE(3)-Equivariant Vectorial Image Filter)A vectorial image filte is a
mapping fromJ; ontoT,. Such a mapping is calle§E(3)-equivariant ifF{gf} = gF{f} for
allge SE3)and fe T;.

We used the gradient vector flow field ([XP97] and [XP98]) ofcalar-valued function in
order to construct an rank-1 tensor field. Given a schlaR® — R, the gradient vector flow
field is defined as the vector field: R® — R2 that minimises the energy functional

E- f V() + IV OIFIVG) ~ VIR dr .8)

Due to the variational formulation, the resulting field getsooth when there is no data. Oth-
erwise wherj|Vf]| is large, therv tends toV f. The parameteu is a regularisation parameter
and should be set according to the amount of noise presemtib@ image (see [XP98] for
details).

After computing the gradient vector flow we applied the vaatamage filter to the resulting
field.
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4.5 Tensor Fields of Multi-Channel Data

In this section we will give an approach on how to include mcitiannel data into the frame-
work of equivariant image filtering. Figure 4.5 shows a humatosis cell.

-l

3%%

 m— |
—

Figure 4.2: Example of a multi-channel image.

By treating each channel as separate scalar-valued fanftioR® — R andi = 1,...,k,
whenk € N denotes the number of channels, we can easily integratentbisr framework.
It is obvious that we can apply all the previously discussker§ to each channel separately.
But even more important is, that we can combine them by usiegame products as before.

The only thing we have to do is, extend the non-linear mappitig of the previous sections
to multiple input.

We will doing this by exemplary fok = 2 channels and give one possible formulation of a
non-linear mapping\!.

Definition 4.5.1. Let f, 5 € T, and Ietpcl’,...,pg and pg, ..., p5 be their expansion in the

harmonic basis. We defile, . as

j 0 n 40 nl._ E j j1 o A2
NMulti [pl’ <o P P2 s pZ] = a/jl,jz p]_ 9o p2 (49)
lig-iol<isiz+i2
j1+ip+jeven
j1.l2<n

whereo! . € R are expansion cggcients.

J1,)2

Since we know that eaghtl’, p3' € T, for m = 0,...,n and knowing the properties of;
it is obvious that equation (4.9) defines 8B(3)-equivariant mapping in the sense of defini-
tion 4.1.3 on page 18. A possible workflow of the filter is dégicin figure 4.3 on page 27.

Algorithm 3 on the following page gives a possible realsatf anSE(3)-equivariant multi-
channel (scalar) image filter. The given algorithm alsoudek information of each channel
separately. One could also formulate a multi-channel vedtionage filter in the same way.
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Algorithm 3 Multi-Channel Harmonic Filter Algorithm

Input: fy, f,: R® >R
Output: y:R3 = R,y :=H{fy, f,}
1: Initialisey," :=0€ T,
2: Initialisey," := 0€ T,
3: Initialiseys" := 0€ T,
// compute projections onto harmonic basis
Convolvep,? := G, = f;
Convolvep,® := G, * f,
for j=1:ndo
p. = Vipt
P = Vip, it
end for
// compute harmonic descriptors
10: for j=n:-1:1do

11y t=v, (ylj + NI [plo, . ..,plj])// for f, only
122y, t=Vv, (yzj + NI [pzo, o pzj])// for f, only

13: yil=v, (y3i +N) [plo, Pl pd ., pzj])// combination off; and f,
14: end for
15: Lety = y;9 + y,0 + y3°
// collect the contribution of all voters
16: Convolvey := G, xy

© N g




4.6 Antisymmetric Products and Local Non-linearities 27

y = H{f1, f2}

Q>

n

Figure 4.3: Workflow of the harmonic filter for two channelsegn and blue.

4.6 Antisymmetric Products and Local Non-linearities

As mentioned in the preliminaries section, ot j; = j, = 1 andv = Sb, w = Sce V; and
b, c € R®it holds

—i(Vo;w) = %S(b X C)

When we think ofv = V*f(r) andw = V'g(r) to be the spherical gradient at positiomf
two scalar fieldsf andg (actually we hav&*f(r) = SVf(r) andVig(r) = SVg(r) ),vor w
computes the cross products of their gradients at positiéior our image filter, this is only
useful when we are in the context of multi-channel imagebe@tise we have (think of the
single channel case) tha®{f(r)) o, (V*f(r)) = 0.

Since the resulting fieldf(o; g) € T7; for f € T;,,9 € T;, andj + j1 + j» = odd, maps onto
elements ofV;, we have to multiply them with-i in order to get a spherical tensor field that
maps ontov;:

~i(fojg) RV,
Inserting the above in our voting functidd, .[-] we are able to formulate the following
extension for multi-channel images:

Definition 4.6.1. Letf,,f, € 7, and Ietp(l’,...,pg and pg, ..., p5 be their expansion in the
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harmonic basis. We defié,_ . as

j i1 iz
Z ¥ Py ®iP;
lig-igl<isii+iz

j1+io+jeven
ii2=n

_ | NN [ R )
Z ¥ | (pl °j P2
li1-i2l<isii+i2

]l+J2+J odd
Jl 12<n

Nasym|PS: - -+ PL. P3. ... 3]

whereozJ € R are expansion cggcients.

J2
In algorithm 4 we give a possible realisation of a multi-ch@lrscalar image filter. But many
other realisations are possible. One could include infétionaf the single channel separately
as we did it in algorithm 3 on page 26 or extend the algorithimgber order input or both.

Algorithm 4 Multi-Channel Harmonic Filter Algorithm with AntisymmedtrProducts
Input: f, fHL:R3 > R,i=12
Output: y:R® - R,y :=H{fy, f,}
1: Initialisey" := 0 € Ty

// compute projections onto harmonic basis
Convolvep:? := G, = f;
Convolvep,® := G, x f,
for j=1:ndo

p,) = Vip

Pz = Vip,
end for
// compute harmonic descriptors
forj=n:-1:1do

9: yj_l =V (yJ + N,JAsym[plo’ cee plj, pzo, ce pzj])
10: end for

11: Lety y +NAS mLp]_,...,plj,pzo,...,pzj]
// collect the contribution of all voters

12: Convolvey := G, *y

R T

0




5 Steerable Filter

This section introduces the concept of steerable filters{[Iif, [JUO4] and [AJUO5]) in a con-
text of an orientation dependent feature detection tasloinli@ the sense of a matched filter
(figure 5.1) this means, that we filter our input sighét) with our templateh(x) and get the
filter response agx) = f(x) = h(x) (by convolution). Measuring the similarity dfx) and the
shifted templatg(x) = h(x — 7) by the inner productf | g), each voxel position in the filtered
signalr(x) reflects the similarity of the input signal and the tempktéhat position.

9 [ |7

Figure 5.1: Matched filter.

Since we are interested in detecting arbitrary rotatedwessof our template, we can state the
following optimisation task:

0(x)", p(x)") = arg ;naxf(x) * h(Rg,4X)) (5.1)

whereh(R,4X) is the feature template rotated by Euler angedside.

The magnitude of the filter* with respect to the optimal orientation of the appropriatgdire
template is given by
r*(x) = f(x) = h(Ry 4-X) (5.2)

A direct implementation of the postulated problem (5.2)asnputationally very expensive
and cannot be applied to real world scenarios. Accordinagywill follow the steerable for-

mulation introduced in [FY91]. Therefore we need to definaraify of separable basis filters,
which can be used to build any rotated version of the filterdkyng a linear combination of
the basis filters (for an introductory example in 2D see [FY91

5.1 M-th Order Basis Filter Bank

By taking the linear combination of a small number of basiefd, we can reduce the compu-
tational costs by filtering our input signal only with the lsafiiter bank.

29
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For the creation of our feature template we use the lineatbagamion of M-th order partial
derivatives of an isotropic 3D Gaussian functig(x) (we assume standard deviation= 1
and meanu = 0 for convenience) according to [AJUO5]:

h(X) = ki, | PV — g(X) > QK| eR (53)
k=1 =0 j=0 0%, 9x) Xy ')
hii.j (x)
M k  k-i
= > i hi(x) (5.4)
k=1 i=0 j=0

% denotes thé-th partial derivative along the coordinatg writing our coordinate vector as
1

X = (X1, XX3)". The functionghy; j(x) build up the basis filter bank.
Now we can formulate the convolution of the input voluri(&) with a rotated version of the
steerable filter as
k k=i
F00 #h(Regx) = " > > Buii(6:9) T+ i (%) (5.5)
k=1 i=0 j=0
where the orientation dependent weighits; (6, ¢) are polynomials in (co#sing), (sind sing)
and co® (see [JUO4] and [FY91])).
It is obvious considering equation (5.5), that we only hav&row the filter response of our
basis filters to compute the filter responsé&@, 4x). The principal work flow of the steerable
filter algorithm is depicted in figure 5.2. Details on thisMaé given in section 5.3 on the next
page.

But first, we need to do some considerations on how to desigspamal template for our

specific mitosis detection task.
Interpolating
Lkwe polynomials

Basis filter bank

Input Image Filtered Image

Summing
junction

2
s 4 e

Figure 5.2: lllustration of the steerable filter algorithm.
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5.2 Design of the Template

The authors in [AJUO5] derive optimal surface and curve deteoriented along thg; axis
by minimising the localisation error which yields to theléaling representation:

2 82 82 2

h(x) =] — — —ql - 1) —
() ax§g+axgg+ax§g (a+ )6)@9

A9

(5.6)

Agdenotes the isotropic 3D laplaciangyfwhich is invariant to rotations. The parameates R

is for the surface detectar= 4 and for the curve detectar= Z (see [AJUO5] for details).
Since we do not have templates than can be given in an aradiwtay, like a line or a surface

as used by [AJUO5], we defined the detector empirically. Tétector we used is depicted in
figure 5.3 and is given by setting= 3 in equation (5.6). We chose the parameters to best fit
the spindle centres of mitosis cells.

The question arises why not to use an SVD approach for steefifters as described in
[SMH98]. The answer is the harmonic filter (see chapter 4)civing in fact a more general
approach than the one described in [SMH98].

5

Figure 5.3: Idea of 3D steerable filter.

Find Best Match

5.3 Steering and Implementation

We can rotate our featuhgx) to an arbitrary orientation specified tay= (cosd sing, sind sing, cose)"
2 62 2

0
h(Rg,4x) = (a_@g + a_xgg + a_xgg

J—(a/+ 1)V Hgv (5.7)
Hy denotes the 3D Hessian matrixg(k). We can rewrite the expression as
h(Rg4X) = VI Agv (5.8)
where
2

2 2 0
Ag:(a_>q9+a_x§g+ax§gJ' — (@ + 1)Hqg
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and| denotes the identity matrix. Using the linearity of the colotion, we can write the
convolution with our rotated feature template as

f(X) * h(RgsX) = VI Af.qv (5.9)

Finally steering of our feature template is done via Eigem@ecomposition. The solution
of the optimal filter response and orientation respectiigetjiven by

I = Amax (5.10)
V' = € (5.11)

Amax denotes the maximum eigenvaluefof,; andenay the corresponding eigenvector.

For the implementation one only has to evaluate tixe83natrixA .4 for each position in the
input volume. Therefore, we first compute the convolutiothwaiur basis filter bank
i I 92 0? 92
(9_Xig, (9_X§g, (9_X§g’ aX]_ang, 8X18X3g, 0Xo0%3

g

and afterwards we get the optimal response and orientayicommputing the Eigenvalue De-
composition ofA+.4.



6 Feature Computation

In this chapter we present our features which we have useddssification and validation
of mitosis cells. We utilise the mathematical theory of gpda harmonics (see chapter 3.3
on page 13) to represent functions defined on a sphere in toorotavariant manner. When
we speak of functions defined on a sphere we nfeanS? — R in a most common sense.
More practical, representing a whole data set by this defimineans we define our function
sampled on the scaled 2-sphere

F:rS?—R
wherer € R andr S? := {x € R} As e S?: x = r s}. We denote the radiusof the sphere
as subscripF,, when we want to distinguish functions sampled dfedent shell radii (see
figure 6.1 on the next page).

6.1 Spherical Harmonic Descriptor

Orthogonal projection of a spherical functiéig, ¢) into the sum of its harmonics:

) |
FO.0)= > > ah Yn(6.9) (6.1)
1=0 m=-I|
wherea), compute as
= (FIY = [ FOV@ds 6.2)
S

wheredsdenotes the standard measures3n
Let g € SO(3) an element of the rotation grougpacts on functions defined on the 2-sphEre

by
(@F)(9 :=F(R"y

whereR € R®>3 is the corresponding rotation matrix ¢go The expansion cdkcientsal, of F
in equation (6.2) have the following transformation praper

m' =l
> Do (@) &y = (Yl gP),
ny=—|

or shortly
Dy = (Y'|gF). (6.3)

The D'g are unitary transformation matrices depending on theiostag and are known as
Wigner D-matricegsee section 3.1 on page 10). This property allows us tombtaariance
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&

Figure 6.1: Function§, defined on the scaled 2-sphe&rg?

against rotations.
Due to the unitarity ng the energy within a subspateés preserved. One can easily obtain
invariant features of the functidn by taking the band-wise energy

m=|
IDyalll = Dy |Dya) = iaTal) = 4| > a2 = ]
m=—I

Doing this for alll = 0,...,N whereN € N is the index by which we truncate the series in
equation (6.1) and defining

SHD(F, N) = {[I&°, ... 13N}, (6.4)

we get an rotation invariant descriptionfofdefined on a sphere. The descriptor given by (6.4)
is called SH-descriptor (see [KFRO03]). For each radius R, i = 1,..., M on which we
sample our data we can define the descriptor SHDN) (see figure 6.2 on the next page) and
get our final feature vector by appending the feature vectiodgterent radii.

We also gain invariance to rotations by calculating the ippreduct of expansion cdigcients
of corresponding subspaces defined iffedent radii. Letr; andr; be radii of diferent shells
andF,, andF;, the corresponding functions defined Q8?2 andr; S? respectively. Let! be
the expansion cdgcients (of a fixed subspadpof F, andb' of F,, respectively. Then we
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Object Center

Figure 6.2: Shell model.

gain rotation invariance due to the unitaritylbg

m=|
(Dya D) = (@ |b)y =a'b! = 3" b, (6.5)

m=—|

We can do this for dferent radii combinations and append the result to our featactor.
Note that we have to assume that the shells have a fixed dignta each other, meaning all
spheres are rotated by the same elengens0(3).

6.2 Extending the Descriptor to Multi-Channel Data

Now we want to do some considerations on how we can extendédberigtor defined in
section 6.1 on page 33 to multi-channel data. By treating ehannel independently it is ob-
vious that we compute a descriptor as described in sectborépage 33 for each channel.
By appending the resulting descriptors of each channel ¢dange feature vector, we get an
invariant descriptor which, however, does not respectritex¢onnection of channels.

The simplest way to include information about interconrmecbf multiple channels would
be to follow the same approach as for connecting functiondifiarent spheres, namely by
inner product. We can assume that all channels have a ritgdconnection, because they
represent the same object. By rotating the object itselffat@te each channel by the same
elementg € SO(3). Therefore equation (6.5) holds for spherical funcidefined by dierent
channels. So we get a rotation invariant description ofniterconnection of two channels by
computing the inner product of their expansionftoents.
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Algorithm 5 SH-Descriptor for Multiple Channels

Input: X : R®—> R,i=1,...,Nlist of channels
Input: rieR,i=1,..., M list of radii
Input: (ri,rj) € R?, 1<, r; < M list of radii tuples
Input: (i, j) € N2, 1<, j < N list of channel index tuples
Output: Invariants
// compute SH-Descriptor for each channel
1. fori=1,...,Ndo
for all r € radiido
Inv := band-wise energy for radiugn sourcex;
append Inv to list of invariants
end for
for all (rq,r,) € radii tuplesdo
Inv := inner product of radir, andr, in sourceX;
append Inv to list of invariants
9: end for
10: end for
// compute interconnection invariants of channels
11: for all (i, ) € index tuplesdo
12:  forall r eradiido

13: Inv := band-wise inner product for radiusn sourcesX; andX;

14: append Inv to list of invariants

15:  end for

16: forall (ry,ry) € radii tuplesdo

17: Inv := band-wise inner product of radiugin sourceX; and radius; in sourceX;
18: append Inv to list of invariants

19: end for

20: end for
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6.3 Simplified MiSP Invariants for Multi-Channel Data
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Figure 6.3: FITC channel profile imagg.are gradient direction quantisation valugss the
radius of the sphere on which the signal was sensed. The indeke radius of
the sphere im.

6.3 Simplified MiSP Invariants for Multi-Channel Data

We will introduce a simplified version of the MiSP invariaotsed in [Ron07]. The main goal

in [Ron07] was to integrate a global deformation model it® Haar-Integration framework
(see [SM95] and [RFBO05]). Therefore, the original dense pace was split up into gradient
direction and gradient magnitude for the construction bligi invariants (see also [SSB6])

and projected onto a 4D sparse space that was spanned byr#mepers]|d|| = distance

to segmentation surface,= radial component of the normalised gradient, and the sensed
signal as function of a deformed sphere (shell with distgfufeto segmentation surface)
parametrised by latitud@and colatitudep.

Since we do not have any information about the contour of djeats, we can not model
deformations as done in [Ron07]. However, when we assume éa@acentric shells around
the object centre, as depicted in 6.2, we can project theatigense space onto the sparse 4D
space by replacing the distanm| to the segmentation surface by the distance to the object
centre. The resulting sparse 4D space is shown in figure 6.8 .dn

The extension to multi-channel data is straightforward,smeply combine the 4D space of
all channels into one multi-channel image (see figure 6.5).

Since we are interested in being invariant to rotations ofanjects, we follow the same ap-
proach as used in section 6.2.
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Figure 6.4: DAPI channel profile imageg.are gradient direction quantisation valugss the
radius of the sphere on which the signal was sensed. The indeke radius of
the sphere imm.
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Algorithm 6 MISP Invariants (for 1 Image)

Input: X:R3—R

Output: Invariants = MiSP(X) list of invariants

Input: rieR,i=1,..., M list of radii

Input: (i, ri) € R?, 1 <ri,r; < M list of radii tuples
Input: (i, j) e N2, 1<, j < Nlist of

Input: gradDir, list of gradient direction quantisation
Output: Invariants

1:

el
N P O

13:

14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:

// compute 4D profile
Initialise profile = 0 € R*// dimensions are distance to centre ("shell”), radial congmbn
of gradient direction ("gradDir")§ and¢

Initialise weights = 0 € R* // dimensions as profile
D := array 3D containing radial distance to object centre
G :=radial component of gradient direction
M := gradient magnitude of
for all (0, ¢) do
for all x on a beam in{, ¢) directiondo
profile(D(x), G(x), 6, ¢) + = M(X) // array access uses tri-linear interpolation
weightsD(x), G(x),0,¢) + = 1
end for
. end for
. profile / = weights

// compute spherical harmonic transform
profileSH = 0 € R* // dimensions are shell, gradDir and Spherical Harmonicsrpeiers
| andm
for all r; in profiledo
for all gradDir in profiledo
profileSH(shell, gradDir)= SH-Transform(profile(shell, gradDir))
end for
end for
// compute invariants
for all r; and gradDirdo
Compute band-wise energy
Append energy to Invariants
end for
for all (r,r;) and gradDirdo
Compute band-wise inner product offerent shells
Append energy to Invariants
end for
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7 Experiments

7.1 Description of Data

The imaging of the cell line data was done with Zeiss ApoToie ApoTome uses the prin-
ciple of structured illumination (see [SSS04] and [BSO06]details) to improve resolution in
the axial dimension.

Though, structured illumination techniques allow imadimigk tissue samples, it also leads to
artifacts in the reconstructed images due to bleachiifegs of the tissue. Figure 7.1 shows an
example of a ApoTome recorded stack slice. One can cleaglyheewave artifacts stemming
from the projected grid.

(a) ChannelO XY-slice (b) Channell XY-slice

Figure 7.1: XY-slice of a stack recorded with the ApoTomevging the wave artifacts which
arise from structured illumination techniques. The présgnmages are highly
gamma corrected

Note that we will refer to the centrosome channel (FITC) aanctel-0, whereas for the cell
membrane (DAPI) channel as channel-1.
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7.2 Segmentation

For segmentation of cell we did experiments with a standatémshed segmentation algo-
rithm. Since the cells showed many disconnected regiors{s2) we applied in a previous
step afill-hole algorithm. The segmentation results aréctieghin 7.3. One can clearly see that
the result is highly over segmented. Therefore we negleotade the segmentation results for
our experiments.

(&) Channell XY{b) Channell XY«c) Channell XY{d) Channell XY-
slice slice slice slice

Figure 7.2: Images with disconnected regions: "holes” ayap’s”.

(a) Raw data XY-slice

(c) Segmentation mask XY-slice

Figure 7.3: Result of the watershed segmentation algorithm
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7.3 Detection of Mitosis Cells

In this section we will present the results of steerablerfitarmonic filter and multi-channel
harmonic filter algorithms which we described in chapterd an

For the steerable filter, we could only use channel-0, becisvery dificult to design a tem-
plate that would match the various shapes of the cells at (seelappendix D for the whole
cell database). We used a normalised version "SF(Norm)'aaretsion without normalisation
"SF(c0)”. The normalisation was done by mapping the valdéseinput data on the interval
[0,1]. Furthermore, and in analogy to the collection of locaieve as for the harmonic filter,
we applied an output smoothing to the filter response to medg@ms of high local evidence
smooth. We refer to them as "SFS(c0)” and "SFS(Norm)” respely. Note that also for the
steerable filter we have a kind of local non-linearity, namal taking highest eigenvalue of
the eigenvalue decomposition.

For the harmonic filter and for the multi-channel harmoniefg, we used a normalised ver-
sion and a version without normalisation. We refer to therfH&gc0)” and "HF(cO,Norm)”
for the single channel version applied to channel-0 and &ViHand "HFM(Norm)” re-
spectively. The harmonic filter using antisymmetric is dedoas "HFMasym” and "HF-
Masym(Norm)” for the normalised version. The normalisatwas done as proposed in sec-
tion 4.2 on page 19 by equation (4.7), by a normalisation effitst-order descriptor image
on the standard deviation of local window.

The vectorial harmonic filter is denoted as "HFM(GVF)” aatiog to the gradient vector flow
fields of channel-0 and channel-1 which were used as filtertiffor the normalisation we set
all vectors to unity length, which means that we only haddiomal information of the flow
field.

Before we go into further details we will represent an ovenwof the filters described above.
Table 7.1 on page 45 gives an overview results of the mitesisction results achieved by the
various filters. Figure 7.3 on the following page gives anrewsv of the complete precision-
recall graphs of the various filters. All results were caiteitl by counting a detection as posi-
tive if it was in a precision radius ofidn around the given label position in order to assure that
we are inside the cell (average cell diameter wa) The best results were achieved with
"HFMasym”, the multi-channel harmonic filter with symmetand antisymmetric products.
A detailed description of all the results can be found in apipeB.

We already discussed the normalisation we chose for oursfilbe case of the harmonic filter
and the smoothed steerable filter we have to choose the sizéhe Gaussian window. Far
we chose half of the average cell diameter, which was fourizetd5um. For the harmonic
filters we also had to choose the size of the local featuré§e achieved our best results with
o = 1.5um. For the expansion degree we used 4. The influence of the fierent expansion
degrees is depicted in 7.5(b) on page 45. If the expansioredeg to low the precision and
recall values are getting worse. This is also the case if weshithe expansion degree to high.
The filter looses its generalisation ability. A good choioethe parametey was found to be
0.1. We mapped all input data values for the scalar filter to #mge [0 1] as we did for the
normalised steerable filter.
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Figure 7.4: Precision-Recall overview of thefdrent filter algorithms.
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Table 7.1: Detection results (recall) in % for fixed preamsi@lues.

Filter 50% Precision 70% Precision 90% Precision
SF(c0) 9% 5%-< 5%-<
SF(Norm) 5%< 5%< 5%<
SFS(c0) 80% 76% 64%
SFS(Norm) 83% 83% 65%
HF(c0) 82% 7% 42%
HF(cO,Norm) 83% 64% 71%
HFM 91% 88% 83%
HFM(Norm) 98% 92% 87%
HFM(GVF) 86% 80% 73%
HFM(GVF,Norm) 45% 5%< 5%<
HFMasym 98% 94% 89%
HFMasym(Norm) 97% 96% 88%

0 I I 1
0 0.2 0.4 0.6 0.8

Precision Precision

(a) Different precision radii. (b) Different expansion valués

Figure 7.5: Precision-Recall forftierent filter parameters of "HFM(Norm)”

The data set with the most false detections is depicted indfig6 on the following page. The
data set shows one huge aberrant cell for which we gave nisldbe&as the only appearance
of such a cell.

All filters had problems when the cells in the input data wargér than the diameter of our
voting function, which was especially the case for cellsha tontrol group. Figure 7.7 on
page 47 shows an example of a cell that was too large. The aslbwtected as two separate
cells, but with low filter response in case of the harmonierfdt

Figure 7.8 on page 48 shows an example where all filters had gsults. But one can also
see the that the harmonic filters have much better localisatiecisions of the "true” cell cen-
tre than the steerable filter.
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Figure 7.6: HT29 (STK15,4) data set with a huge aberrant cell

Figure 7.9 on page 49 shows a false positive detection ofdhradnic filters. It is conspicuous
that the normalised filter HFM(Norm) has the highest respaml it is likely due to the fact
that we have very small standard deviation in channel-0. €hoeild set a highey value in

the normalisation to avoid such false detections.
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(a) Raw data MIP (b) SF(Norm)

(c) HEM(Norm) (d) SFS(Norm)

(e) HFMasym (f) HFM(GVF)

Figure 7.7: Filter responses for a DLD1 (STK15,1,DMSO) data
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(a) Raw data MIP (b) SF(Norm)

(c) HFM(Norm) (d) SFS(Norm)

(e) HFMasym () HFM(GVF)

Figure 7.8: Filter responses for a HT29 (STK15,1) data set.
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(a) Raw data MIP (b) SF(Norm)

(c) HEM(Norm) (d) SFS(Norm)

(e) HFMasym (f) HFM(GVF)

Figure 7.9: Filter responses for a HCT116 (STK15,1,DMSQadet.
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7.4 Cross Validation Results

In order to form our cell database, we extracted all mitositsf the original stacks (see
appendix D). Since we had only few examples of DLD1 and HCT & decided to do a
cross validation in order to compare our features. As diassve chose a SVM with histogram
intersection kernel, and a NN classifier. For the scaled S\ékh& we normalisation of our
features with standard deviation.

Class DLD1 HCT116 HT29 AllClasses

# Sampleg 20 27 81 128

Table 7.2: Cell database details.

We computed seven filerent features. All features that involved sampling theutrgiata on
different shell radii, were evaluated at radii ranging frggmo 1lumwith a step size of Am.

SHD are SH-Descriptor computed on channel-1.

SHD-Multi  are SH-Descriptors computed on channel-0 and channelelreBulting feature
vectors were append to on large feature vector.

SHD-MultiC  are the same as SHD-Multi, but additionally we computed &mheradius the
inner product of channel-0 and channel-1 expansiofficoents.

SHD-MIP is the SH-Descriptor computed on the maximum intensitygmtapn of all shells.
SHD-AIP same SHD-MIP but using average intensity projection offzdllis.

MISP-Multi  are the MISP invariant computed of channel-0 and channetfisgven quan-
tised gradient directions ranging to S with a step size of.

MISP-MultiC are the same as MISP-Multi, but additionally we computedeiach radius
the inner product of quantised gradient directions of cle&@rand channel-1.

In table 7.3 on the facing page we present an overview of alcralidation results. SHD-
Multi were the best with SVM as classifier. The most stableltesvere achieved with MISP-
Multi, were we have nearly the same results for all classifier

Details on all cross validation results including confusinatrices can be found in appendix
C.
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Table 7.3: Overview of cross-validation statistics of thigosis cell database. Each row shows
the true positive rate for a specific feature. The best résuéiach classifier (single
row) is printed in bold face.

Featur¢gClassifier] SVM | SVM (scaled)| 1-NN (L1-Norm) | 1-NN (L2-Norm)
SHD 69.53% 74.22% 67.2% 69.5%
SHD-Multi 83.59% 82.03% 70.3% 64.8%
SHD-AIP 68.75% 64.84% 68.0% 57.8%
SHD-MIP 70.31% 68.75% 69.5% 68.8%
SHD-MultiC 74.22% 81.25% 70.3% 64.8%
MISP-Multi 78.12% 78.12% 78.1% 72.7%
MISP-MultiC 75.78% 78.91% 71.9% 67.2%

7.5 Validation with Support Vector Machines

For validation we classified all detected maxima with a SVMeDest results were achieved
with SHD- MIP descriptor. But the database was to small toetmra meaningful conclusion.

Feature #Labels| #TP | #FP | #FN | #TN | #Detections
SHD-Multi 128 124 | 1857| O 3953 5934
SHD-MultiC 128 124 | 1877 O 3933 5934
MISP-MultiC 128 124 | 2462| O 3348 5934
MISP-Multi 128 124 | 2533| O 3277 5934
SHD- MIP 128 109 | 104 15 | 5706 5934
SHD- AIP 128 109 | 1277| 15 | 4533 5934

Table 7.4: Overview of the validation results.






8 Conclusion and Outlook

This work presented a new approach towards image filterimyusfi-channel 3D images and
feature extraction methods.

We introduced a novel framework based harmonic filters thatva us to use multi-channel
images and therefore information of more than one input eelaiWe achieved much better
results as the standard algorithms used for single chamaglsgale images.

We successfully extended existing 3D invariant featuret s1 SH-Descriptors an gray-scale
MISP invariants to their multi-channel counterparts.

8.1 Outlook

The introduced algorithms form a good basis for further aese and applications on multi-
channel image filtering and feature extraction. But theeestill issues that have to be ad-
dressed to.

Segmentation of the cells could increase the quality oféla¢uires and increase the classifica-
tion results.

One should also consider a way to automatically select kaesinpeters for radii and combi-
nations of radii of our proposed features during the trajmphase.

Since we had only few tissue samples we were not able to doingfahexperiments and
finally answer the question whether it is possible to trainceh line data and classify on
tissue samples. Figure 8.1 and the following figures shasuéisamples and filter responses
of harmonic filters trained on cell line data. The resultklgery promising.
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(a) Tissue raw data MIP  (b) Filter response of HFM(Norm)

(c) Filter response of HF{d) Filter response of HFM(GVF)
Masym(Norm)

Figure 8.1: Filter response of harmonic filters on tissue @aniexample 1). Filters were
trained with cell line data.

(a) Tissue raw data MIP  (b) Filter response of HFM(Norm)
(c) Filter response of HF{d) Filter response of HFM(GVF)
Masym(Norm)

Figure 8.2: Filter response of harmonic filters on tissue @antexample 2). Filters were
trained with cell line data.
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-

(a) Tissue raw data MIP  (b) Filter response of HFM(Norm)
-
(c) Filter response of HF{d) Filter response of HFM(GVF)
Masym(Norm)

Figure 8.3: Filter response of harmonic filters on tissue @antexample 3). Filters were
trained with cell line data.

(a) Tissue raw data MIP  (b) Filter response of HFM(Norm)

(c) Filter response of HF{d) Filter response of HFM(GVF)
Masym(Norm)

Figure 8.4: Filter response of harmonic filters on tissue @antexample 4). Filters were
trained with cell line data.






A Appendix

A.1 Spherical Harmonics

We always use Racah-normalised spherical harmonics.rrstef Legendre polynomials they

are written as
(-m! ,
Yi(6.0) = (= 1 Pr(cost)e’

Mostly we writer/r € S? instead of ¢,6). The Racah-normalised solid harmonics can be
written as

5|++ 5| m
Rr) = NE+mIE—m) ) i o R X

i,j.K

— iy (-x—iy)'Z,

wherer = (x,y, 2). They are related to spherical harmonicsRyyr)/rf = Y. (r/r)

A.2 Clebsch Gordan Coefficients

Orthogonality

D (mljamy, M) Gl jamy, o) = G g (A1)
j»m
Z mljamy, jomp)()'mi i, joMp) = 6 Ommy (A.2)
M=y +Mp
- . - ., 2j+1
Z(Jmljlml,szz><Jm|11m1,Jznfz> = 5 10ki0m (A.3)
5+1
Mg, m
Special Values
1/2 1/2 -1/2
f+m £—m 2t
e Lot N e W S R
1/2
| C+HA—mMm+
(Cmi(f + (M= p), 4y = (1) #( A+p ' )
(A.5)

C+A+m—pu YV2oryoa41 )2
A—pu 21
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Symmetry
(mijamg, jomp)y = (jamy, jomp|jm) (A.6)
(jmljimy, jomp) = (—1)J_+J_l+1_2<jm|j2mz, jam) (A.7)
(mijamy, jomp)y = (1) (=m) ja(=my), jo(—mp)) (A.8)

A.3 Wigner D-Matrix

The components dbj are writtenDy,.. They are called the Wigner D-matrix. In Euler angles
¢, 0,y in ZYZ-convention we have

D! (¢, 0,y) = é™d. ()™,

whered’, (6) are the Wigner d-matrix which is real-valued. Relationtte Clebsch Gordan
codficients:

D= Dfn Dlay(Imllimy, lmp)(Inilang, In) (A.9)
o
D, D2, = | Dh(Imilamy, Lmp)Inilang, 1ony) (A.10)

I,mn



B Details of all Filter Algorithms

B.1 Steerable Filter
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(b) Detection details and equal error rate threshold.

(a) Precision-Recall graph.
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(c) Details per file.

Figure B.1: Details for SF(c0).
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Figure B.2: Details for SF(Norm).
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B.1 Steerable Filter
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Figure B.3: Details for SFS(cO0).



Details of all Filter Algorithms

62

threshold

w0 © il o n = r
] = o 2 = =1 2
g b= a8 b= 35 2 El
= = s s

T
SF8(Norm)
T

0.8
0.6

Ireasy

0.4

0.2

0.8

0.6

0.4

0.2

350 400

300

Frecision

(b) Detection details and equal error rate threshold.

(a) Precision-Recall graph.

[ numMissed

2 numFp

[0 numLabels

(c) Details per file.

Figure B.4: Details for SFS(Norm).
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B.2 Harmonic Filter (Single Channel)
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Figure B.6: Details for HF(cO,Norm).
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B.3 Harmonic Filter Multi-Channel

B.3 Harmonic Filter Multi-Channel
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Figure B.8: Details for HFM(Norm).
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B.4 Harmonic Filter Multi Channel (GVF)

B.4 Harmonic Filter Multi Channel (GVF)
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Figure B.9: Details for HFM(GVF).
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Details of all Filter Algorithms
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B.5 Harmonic Filter Multi Channel (Antisymmetric Products

B.5 Harmonic Filter Multi Channel (Antisymmetric
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Figure B.11: Details for HFMasym.
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C Cross Validation Results

C.1 SVM Histogram Intersection Kernel

Table C.1: SHD

(a) Classification statistics

(b) Confusion table

Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 5/20 (25%) 17108 (10.19%) DLD-1 5 10 5
HCT116 12/27 (44.44%) 1A101 (14.85%) HCT116 7 12 8
HT29 72/81 (88.89%) 1317 (27.66%) HT29 4 5 72
Total 89128 (69.53%) 30828 (30.47%)
Table C.2: SHD-Multi
(a) Classification statistics (b) Confusion table
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 12/20 (60%) 7108 (1.852%)  DLD-1 12 4 4
HCT116 18/27 (66.67%) 7101 (6.931%) HCT116 1 18 8
HT29 77/81 (95.06%) 1247 (25.53%) HT29 1 3 77
Total 107/128 (83.59%) 2M28 (16.41%)
Table C.3: SHD-AIP
(a) Classification statistics (b) Confusion table
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 7/20 (35%) 5108 (4.63%) DLD-1 7 1 12
HCT116 3/27 (11.11%) 2101 (1.98%) HCT116 3 3 21
HT29 78/81 (96.3%) 37 (70.21%) HT29 2 1 78
Total 88/128 (68.75%) 40128 (31.25%)

71



72

Cross Validation Results

Table C.4: SHD-MultiC

(a) Classification statistics

(b) Confusion table

Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 11/20 ( 55%) 7108 (6.481%) DLD-1 11 7 2
HCT116 12/27 (44.44%) 1401 (13.86%) HCT116 5 12 10
HT29 72/81 (88.89%) 127 (25.53%) HT29 2 7 72
Total 95128 (74.22%) 3R.28 (25.78%)
Table C.5: MISP-MultiC

(a) Classification statistics (b) Confusion table
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 10/20 ( 50%) 3108 (2.778%) DLD-1 10 5 5
HCT116 8/27 (29.63%) 7101 (6.931%) HCT116 3 8 16
HT29 7981 ( 97.53%) 2M47 (44.68%) HT29 0 2 79
Total 97/128 (75.78%) 3128 (24.22%)

Table C.6: SHD-MIP

(a) Classification statistics (b) Confusion table
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 9/20 ( 45%) 4108 ( 3.704%) DLD-1 9 2 9
HCT116 3/27 (11.11%) #4101 ( 3.96%) HCT116 3 3 21
HT29 78/81 (96.3%) 3M7 (63.83%) HT29 1 2 78
Total 90/128 (70.31%) 3828 (29.69%)

Table C.7: MISP-Multi

(a) Classification statistics (b) Confusion table
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 12/20 ( 60%) 4108 ( 3.704%) DLD-1 12 7 1
HCT116| 1327(48.15%) 12101(11.88%) HCT116 3 13 11
HT29 7581 (92.59%) 127 (25.53%) HT29 1 5 75
Total 100128 (78.12%) 2828 (21.88%)
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C.2 SVM Histogram Intersection Kernel (scaled)

(a) Classification statistics

Table C.8: SHD

(b) Confusion table

Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 6/20 ( 30%) 8108 ( 7.407%) DLD-1 6 11 3
HCT116 14/27 (51.85%) 18101 ( 14.85%) HCT116 6 14 7
HT29 75/81 ( 92.59%) 1047 ( 21.28%) HT29 2 4 75
Total 95128 (74.22%)  3R28(25.78%)
Table C.9: SHD-AIP

(a) Classification statistics (b) Confusion table
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 5/20 ( 25%) 10108 ( 9.259%) DLD-1 5 7 8
HCT116 5/27 (18.52%) 1201 (11.88%)  HCT116 7 5 15
HT29 73/81 (90.12%) 2R17 (48.94%) HT29 3 5 73
Total 83/128 (64.84%) 4B28(35.16%)

Table C.10: SHD-MIP

(a) Classification statistics (b) Confusion table
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 9/20 ( 45%) 7108 (6.481%)  DLD-1 9 4 7
HCT116 7/27 ( 25.93%) 1M01 (9.901%) HCT116 4 7 16
HT29 72/81 ( 88.89%) 2R17 (48.94%) HT29 3 6 72
Total 88128 (68.75%) 4028 (31.25%)
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Cross Validation Results

Table C.11: MISP-Multi

(a) Classification statistics

(b) Confusion table

Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 12/20 ( 60%) 3108 (4.63%) DLD-1 12 7 1
HCT116 12/27 (44.44%) 12101 (11.88%) HCT116 5 12 10
HT29 76/81 ( 93.83%) 1747 ( 23.4%) HT29 0 5 76
Total 100128 (78.12%) 2828 (21.88%)
Table C.12: MISP-MultiC

(a) Classification statistics (b) Confusion table
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 11/20 ( 55%) 3108 (4.63%) DLD-1 11 7 2
HCT116 14/27 (51.85%) 10101 (9.901%) HCT116 3 14 10
HT29 76/81 (93.83%) 127 (25.53%) HT29 2 3 76
Total 107128 (78.91%) 27128 (21.09%)

Table C.13: SHD-MultiC

(a) Classification statistics (b) Confusion table
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 9/20 ( 45%) 3108 (4.63%) DLD-1 9 9 3
HCT116 1827 (66.67%) 10101 (9.901%) HCT116 3 18 6
HT29 77/81 (95.06%) 7 (19.15%) HT29 2 2 77
Total 104128 (81.25%)  2/128(18.75%)

Table C.14: SHD-Multi

(a) Classification statistics (b) Confusion table
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 11/20 ( 55%) 6108 ( 5.556%) DLD-1 11 7 2
HCT116 17/27 ( 62.96%) 2101 (8.911%) HCT116 4 17 6
HT29 77/81 (95.06%) §A7 (17.02%) HT29 2 2 77
Total 105128 (82.03%) 2R28(17.97%)
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C.3 NN Cross Validation Results

Table C.15:

(a) Classification statistics (1-NN)

SHD

(b) Confusion table (1-NN)

Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 8/20 (40.0%) 12108 (11.1%) DLD-1 8 5 7
HCT116 12/27 (44.4%) 15101 (14.9%) HCT116| 6 12 9
HT29 66/81 (81.5%) 157 (31.9%) HT29 3 12 66
Total 86/128 (67.2%) 4728 (32.8%)

(c) Classification statistics (2-NN) (d) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 3/20 (15.0%) 17108 (15.7%) DLD-1 3 8 9
HCT116 3/27 (11.1%) 24101 (23.8%) HCT116 10 3 14
HT29 60/81 (74.1%) 2147 (44.7%) HT29 3 18 60
Total 66/128 (51.6%) 62128 (48.4%)

(e) Classification statistics (1-NN) (f) Confusion table (1-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 9/20 (45.0%) 17108 (10.2%) DLD-1 9 5 6
HCT116 11/27 (40.7%) 14101 (15.8%) HCT116 7 11 9
HT29 6981 (85.2%) 1247 (25.5%) HT29 2 10 69
Total 89128 (69.5%) 30128 (30.5%)

(g) Classification statistics (2-NN) (h) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 4/20 (20.0%) 16108 (14.8%) DLD-1 4 6 10
HCT116 1/27 (3.7%) 26101 (25.7%) HCT116 9 1 17
HT29 5881 (71.6%) 2PA7 (48.9%) HT29 5 18 58
Total 63/128 (49.2%) 6BL28 (50.8%)
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Cross Validation Results

Table C.16: SHD-Multi

(a) Classification statistics (1-NN)

(b) Confusion table (1-NN)

Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 12/20 (60.0%) 3108 (7.4%) DLD-1 12 4 4
HCT116 11/27 (40.7%) 16101 (15.8%)  HCT116| 4 11 12
HT29 76/81 (93.8%) 247 (10.6%) HT29 1 4 76
Total 99/128 (77.3%) 20128 (22.7%)

(c) Classification statistics (2-NN) (d) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 5/20 (25.0%) 15108 (13.9%) DLD-1 5 6 9
HCT116 5/27 (18.5%) 22101 (21.8%) HCT116 5 5 17
HT29 67/81 (82.7%) 1447 (29.8%) HT29 5 9 67
Total 77/128 (60.2%) 51128 (39.8%)

(e) Classification statistics (1-NN) (f) Confusion table (1-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 6/20 (30.0%) 14108 (13.0%) DLD-1 6 9 5
HCT116 11/27 (40.7%) 14101 (15.8%) HCT116 4 11 12
HT29 74/81 (91.4%) 7A7 (14.9%) HT29 0 7 74
Total 91/128 (71.1%) 37128 (28.9%)

(g) Classification statistics (2-NN) (h) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 3/20 (15.0%) 17108 (15.7%)  DLD-1 3 9 8
HCT116 7/27 (25.9%) 2M01 (19.8%) HCT116 4 7 16
HT29 6981 (85.2%) 1247 (25.5%) HT29 2 10 69
Total 79128 (61.7%) 40128 (38.3%)
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Table C.17: SHD-AIP
(b) Confusion table (1-NN)

(a) Classification statistics (1-NN)

Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 10/20 (50.0%) 1M 08 (9.3%) DLD-1 10 4 6
HCT116 12/27 (44.4%) 15101 (14.9%) HCT116| 3 12 12
HT29 6581 (80.2%) 1M7 (34.0%) HT29 5 11 65
Total 87/128 (68.0%) 4128 (32.0%)

(c) Classification statistics (2-NN) (d) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 2/20 (10.0%) 18108 (16.7%) DLD-1 2 8 10
HCT116 4/27 (14.8%) 23101 (22.8%) HCT116 4 4 19
HT29 52/81 (64.2%) 297 (61.7%) HT29 7 22 52
Total 58/128 (45.3%) 70128 (54.7%)

(e) Classification statistics (1-NN) (f) Confusion table (1-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 9/20 (45.0%) 17108 (10.2%) DLD-1 9 5 6
HCT116 9/27 (33.3%) 1R101 (17.8%) HCT116 4 9 14
HT29 56/81 (69.1%) 247 (53.2%) HT29 7 18 56
Total 74/128 (57.8%) 54128 (42.2%)

(g) Classification statistics (2-NN) (h) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 2/20 (10.0%) 18108 (16.7%) DLD-1 2 10 8
HCT116 3/27 (11.1%) 24101 (23.8%) HCT116 5 3 19
HT29 51/81 (63.0%) 3M7 (63.8%) HT29 8 22 51
Total 56/128 (43.8%) 72128 (56.2%)
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Cross Validation Results

Table C.18: SHD-MIP

(a) Classification statistics (1-NN)

(b) Confusion table (1-NN)

Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 9/20 (45.0%) 171108 (10.2%) DLD-1 9 4 7
HCT116 11/27 (40.7%) 16101 (15.8%)  HCT116| 3 11 13
HT29 6981 (85.2%) 1247 (25.5%) HT29 2 10 69
Total 89128 (69.5%) 30128 (30.5%)

(c) Classification statistics (2-NN) (d) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 5/20 (25.0%) 15108 (13.9%) DLD-1 5 6 9
HCT116 5/27 (18.5%) 22101 (21.8%) HCT116 4 5 18
HT29 51/81 (63.0%) 37 (63.8%) HT29 9 21 51
Total 61/128 (47.7%) 67128 (52.3%)

(e) Classification statistics (1-NN) (f) Confusion table (1-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 8/20 (40.0%) 12108 (11.1%) DLD-1 8 4 8
HCT116 13/27 (48.1%) 14101 (13.9%) HCT116 5 13 9
HT29 67/81 (82.7%) 1447 (29.8%) HT29 4 10 67
Total 88/128 (68.8%) 40128 (31.2%)

(g) Classification statistics (2-NN) (h) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 2/20 (10.0%) 18108 (16.7%)  DLD-1 2 8 10
HCT116 6/27 (22.2%) 21101 (20.8%) HCT116 6 6 15
HT29 52/81 (64.2%) 2047 (61.7%) HT29 7 22 52
Total 60/128 (46.9%) 68.28 (53.1%)
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Table C.19: MISP-Multi
(b) Confusion table (1-NN)

(a) Classification statistics (1-NN)

Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 12/20 (60.0%) #108 (7.4%) DLD-1 12 5 3
HCT116 14/27 (51.9%) 13101 (12.9%) HCT116| 5 14 8
HT29 74/81 (91.4%) 7A7 (14.9%) HT29 1 6 74
Total 100128 (78.1%) 2128 (21.9%)

(c) Classification statistics (2-NN) (d) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 8/20 (40.0%) 12108 (11.1%) DLD-1 8 7 5
HCT116 8/27 (29.6%) 19101 (18.8%) HCT116 8 8 11
HT29 6981 (85.2%) 1247 (25.5%) HT29 3 9 69
Total 85128 (66.4%) 45128 (33.6%)

(e) Classification statistics (1-NN) (f) Confusion table (1-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 8/20 (40.0%) 12108 (11.1%) DLD-1 8 5 7
HCT116 16/27 (59.3%) 17101 (10.9%) HCT116 1 16 10
HT29 6981 (85.2%) 1247 (25.5%) HT29 4 8 69
Total 93/128 (72.7%) 3BL28 (27.3%)

(g) Classification statistics (2-NN) (h) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 2/20 (10.0%) 18108 (16.7%) DLD-1 2 6 12
HCT116 11/27 (40.7%) 14101 (15.8%) HCT116 3 11 13
HT29 5981 (72.8%) 2247 (46.8%) HT29 8 14 59
Total 72/128 (56.2%) 56128 (43.8%)
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Cross Validation Results

Table C.20: MISP-MultiC

(a) Classification statistics (1-NN)

(b) Confusion table (1-NN)

Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 8/20 (40.0%) 12108 (11.1%)  DLD-1 8 4 8
HCT116 1527 (55.6%) 12101 (11.9%)  HCT116 1 15 11
HT29 6981 (85.2%) 1247 (25.5%) HT29 4 8 69
Total 92/128 (71.9%) 36128 (28.2%)

(c) Classification statistics (2-NN) (d) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 4/20 (20.0%) 16108 (14.8%)  DLD-1 4 5 11
HCT116 9/27 (33.3%) 1R101 (17.8%) HCT116 1 9 17
HT29 62/81 (76.5%) 1947 (40.4%) HT29 4 15 62
Total 75128 (58.6%) 5R1.28 (41.4%)

(e) Classification statistics (1-NN) (f) Confusion table (1-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 7/20 (35.0%) 13108 (12.0%) DLD-1 7 2 11
HCT116 13/27 (48.1%) 14101 (13.9%) HCT116 3 13 11
HT29 66/81 (81.5%) 1547 (31.9%) HT29 4 11 66
Total 86/128 (67.2%) 42128 (32.8%)

(g) Classification statistics (2-NN) (h) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 2/20 (10.0%) 18108 (16.7%)  DLD-1 2 4 14
HCT116 3/27 (11.1%) 24101 (23.8%) HCT116 3 3 21
HT29 47/81 (58.0%) 3M7 (72.3%) HT29 7 27 47
Total 52/128 (40.6%) 76128 (59.4%)
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Table C.21: SHD-MultiC

(a) Classification statistics (1-NN)

(b) Confusion table (1-NN)

Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 10/20 (50.0%) 1M 08 (9.3%) DLD-1 10 7 3
HCT116 12/27 (44.4%) 15101 (14.9%) HCT116| 7 12 8
HT29 68/81 (84.0%) 17 (27.7%) HT29 3 10 68
Total 90/128 (70.3%) 38128 (29.7%)

(c) Classification statistics (2-NN) (d) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 5/20 (25.0%) 15108 (13.9%) DLD-1 5 11 4
HCT116 3/27 (11.1%) 24101 (23.8%) HCT116 12 3 12
HT29 6581 (80.2%) 1f47 (34.0%) HT29 3 13 65
Total 73/128 (57.0%) 5B128 (43.0%)

(e) Classification statistics (1-NN) (f) Confusion table (1-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 9/20 (45.0%) 17108 (10.2%) DLD-1 9 7 4
HCT116 8/27 (29.6%) 19101 (18.8%) HCT116 8 8 11
HT29 66/81 (81.5%) 1547 (31.9%) HT29 1 14 66
Total 83/128 (64.8%) 4B128 (35.2%)

(g) Classification statistics (2-NN) (h) Confusion table (2-NN)
Class True Positives (%) False Positives (%) Class DLD-1 HCT116 HT29
DLD-1 6/20 (30.0%) 14108 (13.0%) DLD-1 6 9 5
HCT116 2/27 (7.4%) 25101 (24.8%) HCT116 9 2 16
HT29 60/81 (74.1%) 2147 (44.7%) HT29 2 19 60
Total 68/128 (53.1%) 60.28 (26.9%)



D Overview of the Data

D.1 Treated Group (Nocodacole)

Figure D.1: Treated Group DLD (Nocodacole)

Figure D.2: Treated Group HCT116 (Nocodacole)
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D.1 Treated Group (Nocodacole)
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Figure D.3: Treated Group HT29 (Nocodacole)
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D.2 Control Group (DMSO)

Figure D.4: Control Group DLD (DMSO)

Figure D.5: Control Group HCT116 (DMSO)

Figure D.6: Control Group HT29 (DMSO)
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D.3 Data sets

(a) DLD1 STK15 1 40x (b) DLD1 STK15 1 DMSO 40x
(c) DLD1 STK15 2 40x (d) DLD1 STK15 2 DMSO 40x

(e) DLD1 STK15 3 40x

Figure D.7: Raw images of DLD1 cells.
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(a) HCT116 STK15 1 40x (b) HCT116 STK15 1 DMSO 40x

(c) HCT116 STK15 2 40x (d) HCT116 STK15 2 DMSO 40x

(e) HCT116 STK15 3 40x (f) HCT116 STK15 huebsch DMSO 40x

Figure D.8: Raw images of HCT116 cells.



D.3 Data sets

(a) HT29 STK15 1 40x (b) HT29 STK15 1 DMSO 40x

(c) HT29 STK15 2 40x (d) HT29 STK15 2 DMSO 40x

(e) HT29 STK15 3 40x (f) HT29 STK15 4 40x

(g) HT29 STK15 5 40x (h) HT29 STK15 6 40x

Figure D.9: Raw images of HT29 cells.
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