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1 Introduction

The Network of Excellence AIM@SHAPE organized SHREC, the 3D Shape Retrieval Contest
for the first time in 2006. The general objective is to evaluate the effectiveness of 3D-shape
retrieval algorithms. There was only one track, the retrieval of polygonal models that are not
necessarily watertight (polygon soups), and there were eight participants. For more informa-
tion about the organization, see the SHREC home page at http://www.aimatshape.net/
event/SHREC/. For the preceedings of that event, see [1]. The results were presented at the
Shape Modeling International conference SMI’06.

After the success of SHREC2006, AIM@SHAPE has taken the initiative to organize a
sequel. The contest is organized in conjunction with the SMI’07 conference (Shape Modeling
International), where the evaluation results are presented.

In contrast with the previous contest, this year the contest involves multiple tracks. Track
organizers take care of the following aspects:

• The particular task. One might ask for a complete or limited ranking, a classification,
etc.

• The collection. Is the test set collected or generated. Are there copyright issues? Will it
be made public? Is there a classification of the models?

• The queries. How are the queries determined? Are the query models from the collection
or new models, or is it just a verbal description, etc.

• The ground truth. Is there a ground truth, is there a relevance scale (highly relevant,
marginally relevant, ...), how and when is it determined (based on classification, visual
inspection, ...), etc.

• The evaluation method. Which performance measure will be used for the evaluation
(precision, recall, nearest neighbor, k-th tier, average dynamic recall, normalized cumu-
lated gain, etc.).

• The procedural aspects. Does every participant perform the queries, or is that done in
a central place? Who does the performance assessment? When are test set and queries
made available?
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2 Tracks

Seven tracks have been proposed. Two tracks, one on relevance feedback and one on the
evaluation of similarity measures, received too few registrations of participants, and were
cancelled. The following five tracks have been organized and were run:

• Watertight models. This track was organized by Daniela Giorgi, Silvia Biasotti, and
Laura Paraboschi (CNR - IMATI). Eight groups initially registered, five groups actually
participated [7, 8, 9, 10, 11]. For the track report, see [2].

• CAD models. This track was organized by Yagnanarayanan Kalyanaraman and Karthik
Ramani (Purdue University). Nine groups initially registered, four groups actually par-
ticipated [9, 10, 11, 12]. For the track report, see [3].

• Partial matching. This track was organized by Simone Marini, Laura Paraboschi, and
Silvia Biasotti (CNR - IMATI). Five groups initially registered, only two actually par-
ticipated [13, 14]. For the track report, see [4].

• Protein models. This track was organized by Maja Temerinac, Marco Reisert and Hans
Burkhardt (Albert-Ludwig University Freiburg). Three groups participated [5, 15, 16].
For the track report see [5].

• 3D face models. This track was organized by Frank ter Haar and Remco Veltkamp
(Utrecht University). Seven groups initially registered, three actually participated [17,
18, 19]. For the track report see [6].

While last year there were eight participants in a single track, this year there are 13
participants, spread over five tracks. So the total number of participants has increased, but
the participation per track has decreased, although some tracks received a higher number of
initial registrations. We conjecture that participants generally need more time for preparation
in order to inspect data formats etc.

Some groups participated in more than one track with the same method. In particular,
[9, 10, 11] participate in the watertight models track as wel as in the CAD models track. It
is interesting to see their relative performance.
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[9] Thibault Napoléon, Tomasz Adamek, Francis Schmitt, Noel E. O’Connor. Multi-view 3D retrieval
using silhouette intersection and multi-scale contour representation. These proceedings, p. 33-37.

[10] P. Daras, D. Tzovaras, A. Axenopoulos, D. Zarpalas, A. Mademlis and M. G. Strintzis. The
Spherical Trace Transform. These proceedings, p. 38.

[11] Tony Tung and Francis Schmitt. Shape retrieval of watertight models and CAD models using
aMRG These proceedings, p. 39-45.

[12] Jun Kobayashi, Akihiro Yamamoto, Toshiya Shimizu, and Ryutarou Ohbuchi. A database-
adaptive distance measure for 3D model retrieval. These proceedings, p. 46-49.

[13] Nicu D. Cornea and M. Fatih Demirci. 3D Object Retrieval using Many-to-many Matching of
Reconstruction-based Curve Skeletons. These proceedings, p. 50-52.

[14] S. Marini, S. Biasotti, M. Spagnuolo and B. Falcidieno. Sub-part Correspondence by Structural
Descriptors of 3D Shapes. These proceedings, p. 53-55.

[15] Bin Li, Yi Fang, Karthik Ramani, Daisuke Kihara. Auto classification of SHREC 2007-Protein
Challenge. These proceedings, p. 56-58.

[16] P. Daras, V.Tsatsaias, M. G. Strintzis. 3D Protein Classification Using Topological and Geomet-
rical Information. These proceedings, p. 59.

[17] Stefano Berretti. 3D Face Recognition by Matching Facial Regions. These proceedings, p. 60-64.
[18] Tung-Ying Lee and Shang-Hong Lai. An ICP-Based Approach to Retrieving Similar 3D Face

Models. These proceedings, p. 65-68.
[19] Frank B. ter Haar and Remco C. Veltkamp. 3D Face Retrieval using Advanced Profile Matching

These proceedings, p. 69-72.

4



SHape REtrieval Contest 2007: Watertight Models Track

Daniela Giorgi, Silvia Biasotti, Laura Paraboschi

CNR - IMATI
Via De Marini 6, 16149, Genova, Italy

{daniela.giorgi,silvia.biasotti,laura.paraboschi}@ge.imati.cnr.it

1. Introduction

Despite the availability of many effective 3D retrieval
methodologies, only a handful of commercial products cur-
rently incorporate such techniques. A major barrier to the
adoption of these techniques in commercial services is the
lack of standardized evaluation: it is almost never obvious
what is the best shape characterization or the best similar-
ity measure for a given domain. Having a common under-
standing on 3D shape retrieval would help users to orient
themselves to select the retrieved technique most suitable
for their own specific needs. In this context, the aim of
SHREC is to evaluate the performance of existing 3D-shape
retrieval algorithms, in terms of their strengths as well as
their weaknesses, using a common test collection that al-
lows for a direct comparison of methods.

The pecularity of 3D media retrieval is given by the exis-
tence of many different representations for 3D shapes, from
point-set models, to the many types of boundary represen-
tations and decomposition models [3]. Each particular rep-
resentation is suitable to cope with particular application
needs. For this reason, after the first successful experience
of SHREC 2006, the contest has moved towards a multi-
track organization.

In this report we present the results of the Watertight
Models Track. Watertight models are object models rep-
resented by seamless surfaces, meaning that there are no
defective holes or gaps. They turn out to be useful for many
applications, such as rapid prototyping or digital manifac-
turing.

2. Data collection and queries

The collection to search in was made of 400 watertight
mesh models, subdivided into 20 classes of 20 elements
each. The experiment was designed so that each model
was used in turn as a query against the remaining part of
the database, for a total number of 400 queries. For a given

query, the goal of the track is to retrieve the most similar ob-
jects, that is, the whole set of objects of the class it belongs
to.

The type and categorization of the models in a database
are crucial when testing a retrieval method, and it is difficult
to separate out the influence of the dataset in the perfor-
mance [6]. On the basis of these observations, we built our
benchmark, shown in Figure 1. We manually established
the ground truth, so that the classes exhibit sufficient and
diverse variation, from pose change (e.g. the “armadillo”
class) to shape variability in the same semantic group (e.g.
the class of vases). All classes are made up of the same
number of objects (20), so that generality is kept constant
for each query [2], thus preventing from giving a different
level of importance to different queries. Generality repre-
sents the fraction of relevant items to a given query with
respect to the irrelevant embedding, i.e. the whole set of
non-relevant models in the database; as observed in [2], it is
a major parameter in influencing the retrieval performance.

The original models of our database were collected
from several web repositories, namely the National De-
sign Repository at Drexel University 1, the AIM@SHAPE
repository 2, the Princeton Shape Benchmark [5], the CAE-
SAR Data Samples 3, the McGill 3D Shape Benchmark
4, the 3D Meshes Research Database by INRIA GAMMA
Group 5, the Image-based 3D Models Archive.

3 Participants

Each participant was asked to submit up to 3 runs of
his/her algorithm, in the form of 400 × 400 dissimilarity
matrices; each run could be for example the result of a
different setting of parameters or the use of a different
similarity metric. We remind that the entry (i, j) of a

1http://www.designrepository.org
2http://shapes.aim-at-shape.net
3http://www.hec.afrl.af.mil/HECP/Card1b.shtml
4http://www.cim.mcgill.ca/ shape/benchMark/
5http://www-c.inria.fr/gamma/download/
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Figure 1. The database that has been used,
divided into classes

dissimilarity matrix represent the distance between models
i and j.

In this track five groups participated:

1. Ceyhun Burak Akgül, Francis Schmitt, Bülent Sankur
and Yücel Yemez [7], who sent 3 matrices;

2. Mohamed Chaouch and Anne Verroust-Blondet [8]
with 2 matrices;

3. Thibault Napoléon, Tomasz Adamek, Francis Schmitt
and Noel E. O’Connor [9] with 3 matrices;

4. Petros Daras, Dimitrios Tzovaras, Apostolos
Axenopoulos, Dimitrios Zarpalas, Athanasios
Mademlis and Michael G. Strintzis [10] sent 1 matrix;

5. Tony Tung and Francis Schmitt [11] with 3 matrices.

For details on the algorithms and the different runs pro-
posed by the participants, the reader is referred to their pa-
pers, included in these proceedings.

4 Performance measures

As observed in section 2, each query has its own set of
20 relevant items. We evaluated all the methods using the

standard measures briefly described below.

1. Precision and recall are two fundamental measures
often used in evaluating search strategies. Recall is
the ratio of the number of relevant records retrieved to
the total number of relevant records in the database,
while precision is the ratio of the number of relevant
records retrieved to the size of the return vector [4].
In our contest, for each query the total number of rel-
evant records in the database is always 20, that is the
size of each class. Starting from here, we evaluate the
precision-recall measures for each query, and then av-
erage it over each class and over the entire database.
An averaged recall value can be calculated through the
so-called average dynamic recall, defined in our con-
text as ADR = 1

20

∑20
i=1

RI(i)
i , where RI(i) indicates

the number of retrieved relevant items within the first
i retrieved items. ADR ∈ [0, 1] and its best value is
ADR = 1

20

∑20
i=1

i
i = 1.

2. We compute the percentage of success for the first
(PF) and the second (PS) retrieved items, i.e. the
probability of the first and second elements in the re-
turn vector to be relevant to the given query, and aver-
age them over the whole set of queries. For an ideal
method PF = PS = 100%.

3. With respect to a query, the average ranking is com-
puted averaging the retrieval ranking (i.e. the po-
sitions in the return vector of ordered items) of all
relevant items. The lower this value, the better the
method. The optimal value in our experimental setting
is 1+2+...+20

20 = 10.5.

4. The last place ranking is defined as L = 1− Rank−n
N−n ,

where Rank indicates the rank at which the last rele-
vant object is found, n is the number of relevant items
(n = 20), and N is the size of the whole database
(N = 400) [1]. In this case, the performance of a
method is as good as L is high; in fact L ∈ [0, 1], and
the best value, occurring when the last relevant object
is in the 20th position, is L = 1 − 20−20

400−20 = 1.

5. There is a series of vectors to describe the performance
of retrieval methods that descend from the so called
gain vector G, which is, in our context, a 400-sized
vector such that G(i) = 1 if the i-th retrieved item
is in the same class of the query, 0 otherwise. The
ideal gain vector is IG(i) = 1, ∀i = 1, . . . , 400. The
cumulated gain vector is defined as

CG(i) =
{

G(1) i = 1
CG(i − 1) + G(i) otherwise

in our case the ideal vector would be ICG(i) = i,
i = 1, . . . , 400.
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The discounted cumulated gain vector is

DCG(i) =

{
CG(1) i = 1
DCG(i − 1) + G(i)

log(i) otherwise

The ideal vector IDCG is obtained using ICG and
IG instead of, respectively, CG and G.

We implemented these measures using the software Matlab,
version 7.1 (R14), installed on a Intel(R) Pentium(R) 4 CPU
3.00Ghz, 1.00 Gb of RAM.

5 Results and discussion

Most of the participants sent more than one matrix. In
what follows, we compare the performance of the partici-
pants using their single best run, selected using the previ-
ously described measures. Our choice is motivated by rea-
sons of readability of tables and figures; anyway, the results
of each run are detailed in SHape REtrieval Contest 2007:
Watertight Models Track, Technical Report IMATI-CNR-
GE 9/076.

For all participants, the selected run coincides with the
best one according to all measures used, except for Agkul et
al., that proposed two runs with very similar performances,
so that the choice of the best one was not unique; in this
case, we choose the best performing one in terms of the area
of the precision-recall graph. The comparison of the per-
formance of different runs for the same authors reported in
the technical report mentioned above allows to evaluate the
dependence of each method on different choices of param-
eters. A general observation is that almost all the methods
of the same authors perform more or less the same.

Fig.2 shows the standard precision-recall graph, plot-
ting for each participant precision values vs. recall values.
We remind that curves shifted upwards and to the right in-
dicate a superior performance.

Numerical values for both the average (w.r.t. all the
queries) precision and recall for return vectors of 20, 40,
60 and 80 items (i.e. 1, 2, 3, and 4 times the number of
relevant items to each query) are reported in Table 1 (a) and
(b), respectively.

The average dynamic recall (ADR) values for each par-
ticipants are listed in the following table. As before, these
values refer to the average value with respect to all the
queries.

ADR
Akgul et al. 0.7931

Choauch et al. 0.7206
Napoleon et al. 0.7795

Daras et al. 0.7546
Tung et al. 0.8577

6available at http://watertight.ge.imati.cnr.it/watertight-global.pdf
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Figure 2. Comparing the best final Precision-
recall graphs of each participant

Deepening in this kind of analysis, we can also deal with
class precision, so that it is possible to make consideration
not only on the average performance on the given database,
but also on the specific class results. In this sense we invite
the reader to have a look at the graphs in Fig. 3. It can
be seen that the methods can perform in a very different
manner when dealing with different classes of objects; for
example, while in (a) Chaouch et al. gives the worst result
(armadillo class), in (b) it yields the best one (tables class).
Moreover, some classes are uniformly easy to deal with,
such as the class of pliers (c), while others are uniformly
difficult, as the class of vases (d).

Returning to the whole database, we observed that all the
methods guarantee the identity property (i.e. d(Qi, Qi) = 0
∀i = 1, . . . , 400, Qi ith model in the database), so that
the percentage of success PF of the first retrieved item is
always 100%:

PF
Akgul et al. 100%

Choauch et al. 100%
Napoleon et al. 100%

Daras et al. 100%
Tung et al. 100%

,

The percentages of success PS w.r.t. the second re-
trieved item are listed below:

Ps
Akgul et al. 93.97%

Choauch et al. 92.81%
Napoleon et al. 95.87%

Daras et al. 93.33%
Tung et al. 97.68%

.

7



Precision after 20 40 60 80
Akgul et al. 0.626 0.366 0.262 0.205
Chaouch et al. 0.546 0.329 0.241 0.190
Napoleon et al. 0.604 0.366 0.262 0.205
Daras et al. 0.564 0.346 0.252 0.199
Tung et al. 0.714 0.414 0.290 0.225
Ideal 1 0.5 0.333 0.25

(a)

Recall after 20 40 60 80
Akgul et al. 0.626 0.732 0.786 0.821
Chaouch et al. 0.546 0.658 0.724 0.763
Napoleon et al. 0.604 0.732 0.788 0.822
Daras et al. 0.564 0.692 0.756 0.798
Tung et al. 0.714 0.828 0.872 0.902
Ideal 1 1 1 1

(b)

Table 1. Precision and Recall after 20, 40, 60
and 80 retrieved items

Concerning the average ranking we refer the reader to
the histogram in Figure 4(a). Let us remark that in our case
the ideal value for the average rank is 10.5, and a lower
height of the bars indicate a superior performance.

The last place ranking is evaluated in Figure 4(b). The
value yield by an ideal method is equal to 1. This mea-
sure gives an estimate of the number of the retrieved items
a user has to search in order to have a reasonable expecta-
tion of finding all relevant items. The higher the bars in the
histogram, the lower the number of items to check, meaning
better results.

Finally, let us deal with the mean cumulated and mean
discounted cumulated gain vectors, illustrated in Fig. 5.
We show the 400-elements vectors (top), as defined in Sec-
tion 4, and also a detailed view of the behavior of the first
20 components of the vectors (bottom), that is the behavior
for the very first part of the return vector.

6 Conclusions

This paper proposed a comparative analysis of the re-
trieval performances of 5 different techniques, using a
benchmark database of 400 models represented by water-
tight triangular meshes. Anyway, we warn the reader that,
despite the care used in designing a benchmark and evalu-
ating the results, it may happen that a single test collection
delivers only a partial view of the whole picture.
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Figure 4. Average ranking (a) and last place
ranking (b) of all the methods.

References

[1] J. Eakins, J. Boardman, and M. Graham. Similarity retrieval
of trademark images. Multimedia, 2(5):53–63, 1998.

[2] D. P. Huijsmans and N. Sebe. How to complete performance
graphs in Content-Based Image Retrieval: Add generality and
normalize scope. IEEE Trans. PAMI, (27):245–251, 2005.
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Figure 3. Precision-recall graphs on 4 classes of the database.
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Figure 5. Mean cumulated gain vector (left) and mean discounted cumulated gain vector (right).
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1. Introduction 
 
Engineering parts typically have high genus, rounding 
features (fillets, chamfers), presence of internal 
structure. They are closed watertight volumes. 
Engineering models can be parts or assemblies. A part 
is an atomic unit and many parts are assembled to 
make an assembly. For example, a wheel can be a part 
where as a bike is an assembly. Moreover the 
engineering context is unique where in part families 
and parametric models, i.e. models differ by relative 
dimensions of various local geometries, are common. 
So this track focuses on engineering parts and the 
search tasks in an engineering context. 
 
2. Dataset 
 

The engineering track uses the Purdue Engineering 
Shape Benchmark (ESB) [1]. This established database 
consists of closed triangulated meshes of CAD parts in 
vendor neutral formats. This dataset is classified into a 
ground truth classification which has two levels of 
hierarchy. Overall there are three super-classes with 45 
sub-classes under them. This classification can be 
browsed at http://purdue.edu/shapelab. 

 
3. Query set 
 
The query set was developed to articulate four main 
search conditions in the engineering context. All the 
models in the query set except six of them were 
constructed from the current version of Engineering 
Shape Benchmark. The search conditions that were 
considered are:  
 Subdivided/Decimated: In engineering, the models 
are mostly stored in proprietary formats containing 
exact geometry information. Triangulated meshes 
are generated for neutral format data transfer 
between vendors or for rapid prototyping 
applications. Hence the different triangulation 
parameters for the same model will generate meshes 

with different sets of triangles. This is equivalent to 
having a subdivided or decimated mesh with respect 
to a reference mesh. 

 Parametric Variation: Typically vendors 
manufacture classes of parts. A class or family of 
parts has the same overall shape. The different 
instances of models in a class are obtained by 
choosing different values for parameters such as 
dimensions and constraints. So some portions of the 
model may be in different sizes and proportions.  

 Slightly modified: During many instances in typical 
engineering scenarios the small holes and features in 
a model are overlooked. Consider a single part being 
manufactured in three stages and each stage as being 
handled by different vendors. Then the level of detail 
of the CAD model they use will vary. The initial 
stage vendor may have a very coarse model with no 
holes and other machining features at all. The next 
stage vendor may machine the major features and the 
last stage vendor will create the small holes and 
other finishing effects. So we created models that 
reflect these situations with minor variation in the 
shape details.  

 Partial Shape: Sometimes the user might be 
interested in a specific portion of the shape of a part. 
So we altered models by chopping off some portion 
of the model to create partial shape queries. These 
may be advanced level tasks for the shape search 
engines at this time. 

Details regarding individual queries are available at 
https://engineering.purdue.edu/PRECISE/shrec/results/
queryset.  
 

Search Type Queries 
Subdivided/Decimated 9 
Parametric Variation 10 
Slightly modified 10 
Partial Shape 4 
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4. Submissions 
 

There were 4 participants in the CAD models track 
in SHREC 2007. The participants were Thibault 
Napoleon et al. [2] from ENST-TSI (2 runs), Petros 
Daras et al. [3] from ITI (5 runs), Tony Tung et al. [4] 
from Telecom Paris (4 runs), and Jun Kobayashi et al. 
[5] from University of Yamanashi (2 runs). The 13 
runs of all the participants were all evaluated as 
described below. 

 
5. Evaluation Measures 
 
We have evaluated all the performance measures that 
were used in the SHREC 2006 [6]. The detailed results 
of all the runs’ preformances are available at 
https://engineering.purdue.edu/PRECISE/shrec/results.  

Based on the query model condition, the 
performance can be aggregated and studied for the 
different search types. From the evaluation for 
parametric models, it will be interesting to observe the 
results for the family of parts. We believe that the 
partial shape queries are advanced level tasks at this 
point of time. Nevertheless we incorporated few partial 
shape queries to get an idea of the current level of 
performance. There are six models which are totally 
new and not present in ESB. These models are 
expected to test the performance of any training that 
was used. All other queries are very similar to the ones 
currently existing in ESB. 
 
6. Overall Evaluation 
 
Figures 1 and 2 plot the overall mean normalized 
cumulative gains for each run. From the figures, it can 
 
 

 
Figure 1: Mean Normalized Cumulative Gain vs. 
Rank 

 
Figure 2: Mean Normalized Discounted Cumulative 
Gain vs. Rank 
 
be seen that Kobayashi et al.’s methods perform the 
overall best among all the submissions. More 
evaluations for each query is available on the website. 
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1. Introduction

The general objective of SHREC is to evaluate the effec-
tiveness of 3D-shape retrieval algorithms. The aim of this
track is to evaluate the performance of algorithms for the
partial matching of 3D-shapes.

The dataset used within this track consists of 400 wa-
tertight models (i.e., object models represented by seamless
surfaces) and 30 query models, where each query model
shares common subparts with (possibly) more than one
model belonging to the dataset. Given a query model, the
goal of this track is the retrieval of the largest number of
models from the dataset that share similar subparts with the
given query.

2. Description of the Data Set and the Query
Set

The Dataset used for the track consists of 400 3D ob-
jects grouped into 20 classes consisting of 20 objects each
one. Every model is represented as a watertight mani-
fold mesh encoded in the ’‘object file format’‘ (.off). The
dataset is obtained by selecting its elements from a set of
more than one thousand models harvested from the follow-
ing well known 3D web repositories: the AIM@SHAPE
repository1, the National Design Repository at Drexel Uni-
versity2, the CAESAR Data Samples3 and the McGill 3D
Shape Benchmark4.

The models of the Dataset associated with the name and
the classes they belong to can be found in Figure 1.

The query set consists of 30 3D models each one ob-
tained by combining subparts of models belonging to the
dataset. Also in this case each query model is a watertight
manifold mesh encoded in the .off file format and it is ob-
tained by cutting, scaling and rotating the original models.
The whole set of queries is shown in Figure 2.

1http://shapes.aim-at-shape.net
2http://www.designrepository.org
3http://www.hec.afrl.af.mil/HECP/Card1b.shtml#caesarsamples
4http://www.cim.mcgill.ca/∼shape/benchMark/

Figure 1. The dataset used to evaluate the al-
gorithms proposed by the participants of the
track.

3. Performance Measures

In order to evaluate the performance of the algorithms for
the partial matching, a set of highly relevant, marginally
relevant and non-relevant models belonging to the dataset
has been associated to each query model.

Highly relevant models correspond to the members of
the classes whose models compose the query.

The set of the marginally relevant models consists of the
models that are ‘’reasonably‘’ similar to the given query.
Since it is not easy to define such a set we have chosen an
arbitrary set of models whose shape resembles the overall
shape, or a sub-part, of the query model.

Table 1 shows the ground-truth associated to the queries
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6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

Figure 2. The set of queries. Each query is
obtained by composing sub-parts of objects
belonging to the dataset.

used in this track. Classes not mentioned neither in the Rel-
evant nor in the Marginally Relevant classes have to be con-
sidered non-relevant.

The performance indicator used to compare the algo-
rithms is the Normalized Discounted Cumulated Gain
vector (NDCG), [2].

In order to compute the NDCG vector, the gain vector
G has to be defined accordingly to the ground-truth. The
gain vector is obtained by the ranked list where the model’s
identifiers are substituted with their ‘’relevance scores’‘ and
where the relevance scores depend on the definition of the
ground-truth. In particular, highly relevant, marginally rel-
evant and non-relevant models have relevance scores 2, 1
and 0 respectively. The Discounted Cumulated Gain vector
is recursively defined as:

DCG[i] =
{

G[i] if i = 1
DCG[i − 1] + (G[i]/ log i) otherwise

where G[i] represents the value of the gain vector at the po-
sition i. The normalized discounted cumulated gain vector
NDCG is obtained by dividing DCG by the ideal cumulated
gain vector, see [2] for details.

Query Number Relevant Classes Marginally Relevant Classes
1 cup, teddy vase, four legs
2 human, table armadillo, chair
3 buste, mechanic
4 plier, spring airplane, bird
5 ant, glasses octopus
6 four legs, airplane bird, plier, teddy
7 armadillo, vase, bearing human, cup
8 fish, bird, mechanic airplane, plier
9 chairs, bearings tables

10 human, table armadillo, chair
11 fisher, hand
12 human, octopus armadillo, ant
13 hand, spring
14 human, fish armadillo
15 four legs, vase cup, teddy
16 bird, buste airplane, plier
17 chair, plier airplane, bird, table
18 ant, octopus
19 airplane, armadillo human, bird, plier
20 teddy, spectacle four leg
21 cup, springs vase
22 four legs, cup vase, teddy
23 armadillo, bearing, bird human, airplane, plier
24 airplane, bird plier
25 head, vase cup
26 chair, table
27 teddy, hand four legs
28 octopus, plier bird, airplane, ant
29 airplane, mechanical bird, plier
30 four legs, human armadillo, teddy

Table 1. The ground-truth.

4. Results

Two algorithms have been submitted to this track:

• Cornea: Nicu. D. Cornea (Rutgers University) and M.
Fatih Demirci (Utrecht University)

• ERG: S. Marini, S. Biasotti, M.Spagnuolo and B. Fal-
cidieno (National Research Council of Italy, IMATI,
Genova)

Each algorithm has been executed with two different setting
of parameters: Cornea 1 and Cornea 2 for the algorithm
described in [1] and ERG1 and ERG 2 for the algorithm
described in [3]. The results of the two algorithm can be
found at the SHREC07 homepage.5

Figure 3(a) shows the overall performance of the two al-
gorithms by considering only the highly relevant models,
while in Figure 3(b) both highly relevant and marginally
relevant models are considered. The diagrams are obtained
by averaging the NDCG values obtained for each query.

Figures 4, 5 and 6 show the NDCG diagrams associated
to each query model. Each diagram is obtained by consid-
ering both the highly relevant and the marginally relevant
models.

5. Conclusion

The limited number of participants illustrates that while
for shape retrieval a lot of methodologies have been defined,
only few of that methods are focused on partial matching.

5http://www.aimatshape.net/event/SHREC/
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Figure 3. Overall Normalized Discount Cu-
mulated Gain considering only highly rele-
vant models (a) and both highly relevant and
marginally relevant models (b).

Due to this lack of methods it is difficult to draw the conclu-
sion of this track. Even if the overall results are slightly im-
proved by considering the marginally relevant models, the
performance of the two methods are not radically changed.
On the contrary, the single-query diagrams show that the
two methods provide relevant differences depending on the
heterogeneity of the query set.
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Figure 4. The NDCG vector diagrams for
queries from 1 to 10.
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Figure 5. The NDCG vector diagrams for
queries from 11 to 20.
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Abstract

The SHREC - 3D Shape Retrieval Contest aims at
evaluating the effectiveness of 3D-shape retrieval algo-
rithms on various types of data. In this particular track
the structure of three dimensional proteins is taken un-
der consideration. The Protein Database (PDB) of-
fers over 30000 protein structures. To cope with such
a huge amount of data automatic classification and
search tools get more and more important in biomolec-
ular research. Feature based approaches are known to
be the tool to provide a fast content based retrieval. In
this contest we want to evaluate such methods. Each
protein is attached with a fingerprint which is relying
solely on coordinates of the atom sequence of the pro-
tein, no further information is used. Four different
methods are evaluated.

1 Motivation

Proteins are linear sequences of amino acids which
fold into three dimensional structures. Throughout
evolution the amino acid composition can change, but
the three dimensional structure of the protein stays
conserved. The three dimensional structure of a pro-
tein is closely linked to its function. So, by finding sim-
ilar three dimensional protein structures, their function
and evolutionary linkage can be determined.

Molecular biologists are often interested in getting a
survey of the objects in a biomolecular database mak-
ing classification one of their basic tasks: To which
of the recognized classes in the database does a new
molecule belong? Several classification schemata such
as SCOP [1], CATH and DALI/FSSP are available in
the Internet. When a new object is inserted into the
database the supervision by experts that are very ex-
perienced and have a deep knowledge in the domain of
molecular biology is necessary in most cases. An effi-

cient classification algorithm is desired that can speed
up the classification process by acting as a fast filter
for further investigation.

While SCOP and CATH require classification by hu-
man experts, a fully automatic classification is available
from the FSSP database (Families of Structurally Sim-
ilar Proteins), generated by the DALI (Distance ma-
trix ALIgnment) system. The evaluation of a protein
query by the DALI method is very expensive; compar-
ing a single molecule against the entire FSSP database
currently takes an overnight run.

2 The task

The task of this competition is to classify protein
domains to one of the SCOP folds. The participants
were able to train their feature extraction algorithms
on the provided data set. One day before the end of the
competition, the participants were provided with a set
of 30 unknown protein domains. The query files had
contained all atoms of the protein domain and their
3D coordinates. The task was then to assign the query
protein domains to SCOP folds. Since the entire SCOP
database is divided into more than 970 folds, we limited
the task to assigning the unknown protein domains to
one of the 27 folds provided in the data set.

We provided a dataset, which consists of 685 protein
domains divided into 27 folds according to their SCOP
classification. We have chosen this dataset because it is
rather difficult, it does not contain any close-by related
structures. Thus, the performance differences between
the competitors become more apparent. For each pro-
tein only the atom positions are allowed to be used
for retrieval. No additional information like chemical
properties or others, e.g. temperature were allowed to
be used. The 3D coordinates were provided in the com-
mon pdb file format.
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2.1 SCOP

In the SCOP1 (Structural Classification of Proteins)
database published in 1995 all proteins of known struc-
ture are ordered according to their evolutionary and
structural relationship. The protein domains are hi-
erarchically grouped into families, superfamilies, folds
and classes The basic unit in SCOP is a protein do-
main. The domain is either a monomer or a part of a
protein and it should reflect a structure that did not
change throughout evolution. Since this definition is
very hard to measure by an algorithm, SCOP solely
relies on visual inspection by experts.

Each domain can be addressed either by a unique in-
teger (sunid) or by a concise classification string (sccs).
For example, the protein with the PDB identity 1dlr
has the sunid 34906 and the sccs ’c.71.1.1’, where ’c’
stands for the class, ’71’ the fold, ’1’ the superfamily
and the last ’1’ for the family. In the ’dir.des.scop.txt’
file the domains sunid, sccs and English names for
proteins, families, superfamilies, folds and classes are
listed. Also the sequence number where the domain in
the chain starts and ends is contained in this file.

A family consists of proteins which either have
residue identities over 30% or have similar structure
or functions. Globins and Triosephosphate isomerase
(TIM) are examples of protein families. A superfam-
ily consists of proteins with lower than 30% sequential
identity and a probable common evolutionary origin.
Examples for superfamilies are Actin-crosslinking pro-
teins. A fold contains proteins having same major sec-
ondary structures in same arrangement with the same
topological connections. The most interesting mem-
bers of a fold are those with low sequential similarity
where there exists an evolutionary link to the other
proteins of the fold. A class contains folds with simi-
lar secondary structure and is the most general way of
defining a protein structure.

3 Participants

In this track we had two groups participating:

• B. Li, Y. Fang, K. Ramani, D. Kihara [6] (Purdue
University, USA)

• P. Daras, V. Tsatsaias [7] (ITI, Greece)

The group from ITI participated with two different
methods:

• a three dimensional shape-structure comparison
method (Trace) [5]

1http://scop.mrc-lmb.cam.ac.uk/scop/

• a graph based method (Graph) (not yet published)

Each group submitted a ranked list of the unknown
30 protein structures (See Figure 2) together with the
distance of each query to each protein from the 633
training set computed by their method. The submitted
ranked lists are available at http://lmb.informatik.uni-
freiburg.de/events/shrec07/results.html. The SCOP
classifiaction [1] was considered as the ground truth.
Only the ATOM section of the PDB [2] files was pro-
vided.

We also compared the results to the classification
achieved by our method (LMB, Germany) [3]. Since we
organized the track, our results are out of competition.
But we want to emphasize here that our features were
not tuned on the 30 test proteins, we only used the
training set for parameter tuning.

4 Methods

Li et al. focus on the topology of each protein:
they use STRIDE [4] to detect the secondary struc-
ture, including the hydrogen bond. Then, they com-
pute the beta sheets (beta strands connected with hy-
drogen bond) and the order. For main class a, b, c,
d, g, and folds of a and g, they used the length and
percentage of alpha helix and beta strand to classify.
For each fold in each class b, c, d, they used the orders
to classify.

P. Daras and V. Tsatsaias submitted two ranked
lists computed with two different methods. The first
method (Trace) is described in the paper [5]. The sec-
ond method (Graph) is called ’3D Protein Classifica-
tion Using Toplogical and Geometrical Information’ [7].
The 3D objects are firstly segmented to their molecular
structure. Then, descriptors are extracted for each seg-
ment using spherical harmonics algorithms, and graphs
are constructed for the molecules. Next, a sub-graph
matching procedure is utilized in order to provide final
similarity distances between the graphs.

Our method (LMB) was proposed in [3]. The basic
idea of our approach is to obtain invariant fingerprint of
the 3D structure. Therefore, we use a group integration
approach. Practically the features can be seen as joint
histograms over spatial distances, sequential distances
and 2 angle-like quantities.

5 Evaluation

The ranked lists were evaluated by the following
simple method: The next neighbor in the ranked list,
meaning the protein domain with the least distance to
the query protein is considered and the query protein
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is assigned to its class. One point is scored for the cor-
rect SCOP class only, two points for the correct SCOP
fold and zero points if neither of them is correct. The
maximal amount of points is 60, when the fold for each
query protein is correctly classified.

As can be seen in Figure 1, from the three submitted
methods , the team from Purdue performed (total score
45) best even though using simple features. The two
methods submitted by team ITI misclassified half of
the query proteins and their best method Graph scored
29 points. However, even better classification could be
achieved by the LMB team, total score 52.

The query set (Figure 2) was chosen randomly from
the 27 scop folds. Some proteins consisted of only one
domain, others (e.g. Protein2, Protein8, Protein23) of
several domains which were however all belonging to
the same fold. Also, the size of the protein domains
ranged from 31 amino acids (Protein11) to 364 amino
acids (Protein16).

Figure 1. Comparison of the methods in
terms of nearest neighbor classification.

Group Wrong Correct Correct score
Class Fold

Purdue 5 5 20 45

ITI(Trace) 15 8 7 22

ITI(Graph) 14 3 13 29

LMB 2 4 24 52

Table 1. The results of the nearest neighbor
classification according to the ranked lists
submitted by each group.

6 Discussion and Conclusion

It is astonishing that the very simple method from
Purdue is working so well in comparison to the methods

proposed by ITI. It seems that properties and frequen-
cies of secondary structure elements are a very impor-
tant information for the presented task. The method
(Trace) by ITI covers more the overall 3D structure, the
tertiary structure, and is less sensitive for secondary
and primary structure elements. Another issue is that
(Trace) uses a normalization approach (by the center
of mass) to obtain invariance against translations of
the 3D structure. This approach can be very unsta-
ble when only partial structures are matching. Al-
though the (Graph) method works a little bit better, it
still achieves less than 50 % classification correctness.
Statistical features seem to be a more discriminative
feature than trying to establish one-to-one correspon-
dences by a matching approach. The good performance
of our method (LMB) could be explained by the fact
that it describes all structural levels uniformly. Pri-
mary and secondary structure elements are described
by cooccurences of small sequential and spatial dis-
tances, the tertiary structure is contained in occur-
rences of larger distances.

In conclusion, this competition has shown that
statistics that rely upon low-level features as primary
and secondary structure are much more important for
the protein retrieval task, than features of the tertiary
structure, that is the overall shape of the protein.
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P0, 1agt P1, 1b0b P2, 1c6vA P3, 1cch P4, 1cor

P5, 1dp4 P6, 1dyzA P7, 1e9m P8, 1eq2B P9, 1eylA

P10, 1fe0A P11, 1g26 P12, 1gcpA P13, 1gglA P14, 1gqzA

P15, 1gyvA P16, 1icp P17, 1ihmA P18, 1il6 P19, 1jjf

P20, 1jr6 P21, 1jzmA P22, 1kt7 P23, 1mi3 P24, 1mi3A

P25, 1pruA P26, 1rfjA P27, 1vavA P28, 1wat P29, 1xnc

Figure 2. The evaluation dataset.
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1. Introduction

The general objective of SHREC is to evaluate the ef-
fectiveness of 3D-shape retrieval algorithms. This shape re-
trieval contest focusses on the retrieval of 3D face models
using geometric shape information only. Insight in the per-
formance of face retrieval algorithms may lead to better face
recognition methods.

Seven participants registered for “SHREC 2007 - Shape
Retrieval Contest of 3D Face Models”, four of them with-
drew during the contest. Each participant was asked to 1)
submit a list of queries for which relevant faces were au-
tomatically generated, 2) apply their method(s) to retrieve
the relevant faces for each of the queries, that is, generate
for each query a ranking of all faces in the database (run
file), 3) submit up to five run files from different runs on the
database, and 4) write a short paper about their method(s).
All of the information contained in this track-document is
available online [5].

2. Queries

Before the retrieval contest, each participant had access
to the database by means of snapshots of the 1000 face mod-
els sorted on increasing face area. Each participant who
registered to the contest had to provide ten potential queries
using three model names per query, describing the query
model and two other models to morph the query to (as de-
scribed in Section 3). To remove duplicate queries and
to increase the diversity of differently sized queries, eight
queries were selected from each participant and eight addi-
tional queries were added, with 64 queries as a result (see
Figure 1). Each participant was requested to submit a sorted
ranked list of all database faces for each of the 64 queries,
which we refer to as a run file.

3. Database

For this contest we generated a initial database of 1000
emotionless 3D face models with the use of the morphable
face model [2]. Each instance of the morphable model was
created by assigning m (m=100) random weights αi within

the range [-1.5,1.5] to the shape vectors of the morphable
model: S =

∑m
i=1 αiSi. A morphable model consists

of 75,972 vertices and 150,958 faces. Snapshots of these
random faces were used to select the queries in the previ-
ous section. Important to note is that each instance of the
morphable model could have been a post-processed scan
obtained with a Cyberware Head and Face 3D laser range
scanner.

For each of the 64 query faces we generated eight rele-
vant face models by morphing the query face towards and
away from mean face (αi=0) and towards two other faces in
the database, using a 60-40 and a 40-60 weighting scheme
(e.g. γi = 0.6αi + 0.4βi). These relevant faces are added
to the database which builds up a database of 1512 different
face models. Four copies of database models were added to
the database to be able to check the consistency of methods,
none of these models were selected as part of a query.

The following items explain the creation of relevant
faces in more detail and Figure 2 shows two examples of
automatically generated clusters of relevant faces. Note that
a generated cluster of 3D face models contains look-a-like
faces, we can not assume that such a cluster resembles mul-
tiple range scans of truly the same person.

1. Given the mean face M and the selected query of ran-
domly generated faces “face A - face Q - face B”.

2. Face Q is used as query.

3. Face Q is selected from the database, which makes it a
highly relevant (i.e. identical) instance that needs to be
retrieved.

4. Highly relevant instance R1 is created by scaling the
weights of Q with 0.6, which morphs Q towards the
mean face (less detail/noise).

5. Highly relevant instance R2 is created by scaling the
weights of Q with 1.4, which morphs Q away from the
mean face (more detail/noise).

6. Highly relevant instance R3 is created by averaging the
weights of Q and A according a 60-40 ratio.

7. Highly relevant instance R4 is created by averaging the
weights of Q and B according a 60-40 ratio.
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Participant Affiliation Reference Number of runs
Berretti et al. University of Florence, Italy [1] 5
ter Haar et al. Utrecht University, the Netherlands [4] 3
Tung-Ying Lee et al. National Tsing Hua University, Taiwan [3] 2

Table 1. Participants of SHREC 2007 - Shape Retrieval Contest of 3D Face Models

Figure 1. The 64 query faces of the contest.
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8. Marginally relevant instance R5 is created by scaling
the weights of Q with 0.4, which morphs Q further to-
wards the mean face (less detail/noise).

9. Marginally relevant instance R6 is created by scaling
the weights of Q with 1.6, which morphs Q further
away from the mean face (more detail/noise).

10. Marginally relevant instance R7 is created by averag-
ing the weights of Q and A according a 40-60 ratio.

11. Marginally relevant instance R8 is created by averag-
ing the weights of Q and B according a 40-60 ratio.

12. Averaging two faces as in R3, R4, R7, and R8 causes
the outcome to move towards the mean face, because
the weights ai are pairwise averaged. We compensate
for this by scaling the weights uniformly such that the
total absolute sum of these weights equals 75, which is
a measure for the level of detail.

A query face can have additional relevant models in case
the query is used for another query to morph to. Consider
a query face Q’ and the selected faces “face A - face Q -
face B”. If face Q’ equals face A, then face Q’ has face R7
as additional highly relevant face. If face Q’ equals face B,
then face Q’ has face R3 as additional marginally relevant
face. In our contest we have eleven query faces that were
used for one other query to morph to. Therefore, the final
classification of face models has 53 queries with one identi-
cal, four highly relevant, and four marginally relevant faces
and eleven queries with one identical, five highly relevant,
and five marginally relevant faces. For each query the goal
is to retrieve its nine or eleven relevant faces.

The generated instances of morphable models have nor-
malized poses and full correspondences between vertex and
face indices. Therefore, all faces in the database and query
set 1) are centered with the center of mass in the origin, 2)
are randomly rotated (at most 30 degrees around the x-, y-,
and z-axis), 3) have their vertex and face indices randomly
reassigned, 4) are renamed using a unique random index
number. Note that a query’s identical database face has a
different orientation, which makes its retrieval non-trivial.

4. Performance measures

For each query there exists a set of highly relevant items
and a set of marginally relevant items. Therefore, most of
the evaluation measures have been split up as well. The
evaluation measures “xxx(highly relevant)” are based on the
highly relevant items only, while the evaluation measures
“xxx(relevant)” are based on all relevant items (highly rel-
evant items + marginally relevant items). The submitted
ranked lists are turned into a gain vector by replacing item
IDs by their relevance scores. A highly relevant retrieved

item corresponds to relevance score 2, a marginally rele-
vant retrieved item corresponds to relevance score 1, and a
non-relevant retrieved item corresponds to relevance score
0 (cited from [6]).

Because the ranked lists are rankings of all the database
items, the evaluation is performed on a certain scope of the
ranked list. In our case the scope is the subset of the first
S highest ranked items. The number of relevant items in
the scope (true positives) is often used as part of an eval-
uation measure, which makes the scope size an important
variable. In our contest we have a scope size equal to the
size of the database, therefore we focus on evaluation mea-
sures that take into account the position of retrieved relevant
items (e.g. Average Precision), or that use a selected sub-
set of the ranked lists (e.g. the k-th Tier). For the actual
performance measures and their definitions we refer to our
website [5].

5. Results

For each ranked list, the following performance mea-
sures are calculated: Average Precision, First Tier and Sec-
ond Tier (for both highly relevant and all relevant items),
Average Dynamic Precision, Normalized Cumulated Gain
and Normalized Discounted Cumulated Gain (for the first
5, 10, 25, 50 and 100 ranked items), and whether or not the
best ranked item is identical to the query. For each query,
these evaluation scores are listed per run file per participant
(See our website [5]). In addition to these evaluation scores,
there are two performance graphs showing the performance
of individual run files per query, namely the Precision ver-
sus Recall graph and the Normalized Discounted Cumu-
lative Gain versus Recall graph both based on all relevant
items (Figure 3).

To evaluate a run file, we have averaged the evaluation
scores over all 64 queries. These evaluation scores are listed
per evaluation measure. Two performance graphs are in-
cluded on the website to visualize some results, namely the
the Mean Normalized Cumulated Gain and the Mean Nor-
malized Discounted Cumulated Gain for the top 100 ranked
items (See Figure 4 for the latter).

The retrieval results according four evaluation measures
are shown in Table 2. The evaluation scores shown are to-
tal number of identical items found on top of the ranked
lists, the Mean Average Precision of highly relevant items
(MAPH), the Mean Average Precision of relevant items
(MAPR) and the Mean Average Dynamic Precision.

6. Concluding remarks

For this contest a new database was generated using the
Morphable model. The Morphable model was selected for
the following reasons: 1) a large number of different faces
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Figure 2. Two examples of automatically generated clusters of relevant models.

Figure 3. For each run file, the scores for the first query. Left: Precision versus Recall(relevant).
Right: Normalized Discounted Cumulative Gain versus Recall(relevant).

can be automatically generated, 2) the morphing between
faces allows the automatic creation of relevant faces, 3) the
morphable model generates faces with proper topology and
without holes. An existing database such as the Notre Dame
database could have been used, but many face matching
methods are developed for and tested on this database in-

creasing the risk for overfitting.
The retrieval of relevant faces for each query poses to

problems. Firstly, a face matching method has to cope with
the random reorientation of the face models. Secondly, a
face matching method has to select a set of features that dis-
tinguish relevant faces from non-relevant faces. The scores
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Figure 4. For each run file, the Mean Normalized Discounted Cumulated Gain @x[0,100] over all
queries is shown.

Method Identical 1st MAPH MAPR MADP
ideal 64/64 1.0 1.0 1.0
ter Haar run1 63/64 0.6613 0.4775 0.6809
Tung-Ying Lee run 1 50/64 0.6159 0.4785 0.6519
ter Haar run3 48/64 0.5945 0.4782 0.6404
ter Haar run2 43/64 0.5618 0.4536 0.6186
Berretti run3 35/64 0.2253 0.1741 0.2903
Berretti run1 35/64 0.2320 0.1778 0.3018
Berretti run4 34/64 0.2213 0.1735 0.2877
Berretti run2 34/64 0.2288 0.1777 0.2986
Tung-Ying Lee run 2 32/64 0.3694 0.2976 0.4402
Berretti run5 20/64 0.2073 0.1598 0.2486

Table 2. Retrieval results all methods

from Figure 2 show that the retrieval of the relevant classi-
fied faces from a very large database is a difficult problem.
The fact that the face identical to the query model is not al-
ways found on top of the ranked list, shows how difficult it
is for face recognition methods to handle differently orien-
tated faces. Because of the limited number of participants,
care should be taken not to draw too far reaching conclu-
sions from this retrieval contest.

Nowadays, numerous amount of techniques exist to ob-
tain 3D face data using a laser range scanner, such as tak-
ing a single scan from one view, merging multiple scans
from different views, and taking cylindrical scans around
the face. Therefore, the assumption about a certain pose
of the face model often doesn’t hold. This indicates the
need for further research in the direction of pose normaliza-
tion methods invariant to different scan data and even pose
normalization methods and face matching methods that are
entirely rotation invariant.
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Abstract

In this brief communication, we provide an overview of
the density-based shape description framework and the de-
tails of the runs we have submitted to the SHREC’07 Wa-
tertight Models Track. We also present the results of an
improved matching scheme leading to more effective 3D re-
trieval.

1 Introduction

Density-based shape description is a framework to ex-
tract 3D shape descriptors from local surface features char-
acterizing the object geometry [1, 2]. The feature informa-
tion is processed with the kernel methodology for density
estimation (KDE) [3] and the probability density function
(pdf) of the local feature is estimated at chosen target points.
The shape descriptor vector is then simply a discretized
version of this probability density. This density-based ap-
proach provides a mechanism to convert local shape evi-
dences, using KDE, into a global shape description. Our re-
cent work on density-based shape descriptors [1, 2] for 3D
object retrieval has proven that this scheme is both computa-
tionally rapid and effective compared to other state-of-the-
art descriptors. In this brief communication, we provide an
overview of the density-based shape description framework
in Section 2 and the details of the runs we have submitted to
the SHREC’07 Watertight Models Track in Section 3. More
details about the methods and its performance can be found
in [1, 2].

2 Overview of the Description Framework

A density-based descriptor of a 3D shape is defined as
the discretized pdf of some surface feature S taking values
within a subspace RS of Rm. The feature S is local to
the surface patch and treated as a random variable. For an

object Ol represented as a triangular mesh, evaluating the
feature S at each triangle and/or vertex, we can obtain a set
of observations about S, that we call the source set, denoted
as {sk ∈ RS}K

k=1. Let f(·|Ol) be the pdf of S. Using
the source set {sk ∈ RS}K

k=1, the value of this pdf at an
arbitrary m-dimensional point t (which is in the range space
RS of the feature S) can be estimated by the following KDE
equation [3]:

f(t|Ol) =
K∑

k=1

wk |H|−1K(H−1(t− sk)), (1)

where K : Rm → R is a kernel function, H is a m × m
matrix composed of a set of design parameters called band-
width parameters, and wk is the importance weight asso-
ciated with the kth observation sk. Suppose that we have
specified a finite set of points RS = {tn ∈ RS}N

n=1, called
the target set, within RS . The density-based descriptor
fS|Ol

for the object Ol (with respect to the feature S) is
then simply an N -dimensional vector whose entries consist
of the pdf values computed at the target set RS = {tn ∈
RS}N

n=1, that is, fS|Ol
= [f(t1|Ol), . . . , f(tN |Ol)] . To

convert this general framework into a practical description
scheme, we have to address the following issues:

Feature Design: Which surface features should be used
to capture local characteristics of the surface? (See Section
2.1.)

Target Selection: How to determine the targets tn ∈ RS

at which we will evaluate the KDE equation in (1)? (See
Section 2.2.)

Density Estimation: How to choose the kernel function
K, how to set the bandwidth parameter matrix H in (1) and
how to evaluate this equation in a computationally efficient
manner? (See Section 2.3.)

2.1 Feature Design

In the following, we assume that the 3D object is em-
bedded in a canonical reference frame of R3 whose origin
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coincides with the center of mass of the object. The ref-
erence frame can be computed using the continuous PCA
approach [4].

1. Radial distance R measures the distance of a surface
point Q to the origin (centroid). Though not an effec-
tive shape feature all by itself; when coupled to other
local surface features, it helps to manifest their distri-
bution at varying radii.

2. Radial direction R̂ is a unit-norm vector (R̂x, R̂y, R̂z)
collinear with the ray traced from the origin to a sur-
face point Q. This unit-norm vector is obviously scale-
invariant.

3. Normal direction N̂ is simply the unit normal vec-
tor at a surface point and represented as a 3-tuple
(N̂x, N̂y, N̂z). Similar to the radial direction R̂, the
normal N̂ is scale invariant.

4. Radial-normal alignment A is the absolute cosine of
the angle between the radial and normal directions and
is computed as A =

∣∣∣〈R̂, N̂
〉∣∣∣ ∈ [0, 1]. This fea-

ture measures crudely how the surface deviates locally
from sphericity. For example, if the local surface ap-
proximates a spherical cap, then the radial and normal
directions align, and the alignment A approaches unity.

5. Tangent-plane distance D stands for the absolute value
of the distance between the tangent plane at a surface
point Q and the origin. This scalar feature D is related
to the radial distance R by D = R.A.

6. Shape index SI provides a local categorization of the
shape into primitive forms such as spherical cap and
cup, rut, ridge, trough, or saddle. In the present work,
we consider the following parameterization

SI =
1
2
−

(
2
π

)
arctan

(
κ1 + κ2

κ1 − κ2

)
,

where κ1 and κ2 are the principal curvatures at the sur-
face point. SI is confined within the range [0, 1] and
not defined when κ1 = κ1 = 0 (planar patch).

Our previous work [1, 2] has shown that the density-
based framework is more effective when we consider the
joining of the local features described above, to obtain even
higher dimensional features. In the present work, we con-
sider three such instances:

Radial feature S1 is obtained by augmenting the scale-
invariant radial direction vector R̂ with the rotation-
invariant radial distance R. The resulting 4-tuple S1 ,
(R, R̂x, R̂y, R̂z) can be viewed as an alternative to Carte-
sian coordinate representation of the surface point. In this

parameterization, however, the distance and direction infor-
mation are decoupled. With this decoupling, the range of in-
dividual features can be determined independently. In fact,
R̂ lies on the unit 2-sphere, and the scalar R lies on the
interval (0, rmax), where rmax depends on the size of the
surface.

Tangent plane feature S2 is obtained by joining the tan-
gent plane distance D with the normal direction N̂, pro-
viding a 4-dimensional vector S2 , (D, N̂x, N̂y, N̂z) that
corresponds to the representation of the local tangent plane.
As in the radial case, this representation also separates the
distance and direction information concerning the tangent
plane.

Finally, we define a third feature S3 , (R,A, SI),
which aims at encoding the interaction between the ra-
dial and normal directions through the alignment feature A
and at adding further local surface information through the
shape index SI . Again the radial distance R augments the
two-tuple (A,SI) to capture the characteristics of the shape
at different distances from the center of the object.

In our runs, we will use the discretized pdfs of all these
three features as descriptors and combine their individual
discrimination capabilities (see Section 3).

2.2 Target Selection

The targets sets for our local features occur as the
Cartesian products of their individual constituents. For
instance, the S1-feature is composed of a scalar feature
R ∈ (0, rmax) and a unit-norm 3-vector R̂ ∈ S2. Accord-
ingly to determine the target set RS1 , we first uniformly
sample the interval (0, rmax) to obtain a distance set RR,
then partition the unit 2-sphere using the octahedron sub-
division scheme described in [1, 6] to obtain a direction
set RR̂, and finally take their Cartesian products to obtain
RS1 = RR ×RR̂. Note that rmax depends on the type of
scale normalization applied to the object. The target set for
S2 = (D, N̂x, N̂y, N̂z) can be obtained likewise. Finally
the target set for S3 is given by RS3 = RR ×RA ×RSI ,
where both RA and RSI are uniformly sampled versions
of the interval [0, 1] since both A and SI share the same
unit-interval as range.

2.3 Density Estimation

It is known that the particular functional form of the ker-
nel does not significantly affect the accuracy of KDE [3].
In our scheme, we choose the Gaussian kernel since there
exists a fast algorithm, the fast Gauss transform (FGT) [5],
to rapidly evaluate large KDE sums in O(K + N) instead
of O(KN)-complexity of direct evaluation, where K is the
number of sources and N is the number of targets.
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The settings of the bandwidth matrix H has been shown
to be critical for accurate density estimation [3], which in
turn affects shape discrimination and retrieval performance
[1]. The optimal bandwidth for KDE depends on the un-
known density itself [3], making the appropriate choice of
the bandwidth parameter a challenging problem. Guided by
the results of our previous work in [1], we set the bandwidth
parameter by averaging all object-level bandwidths given by
Scott’s rule [3] or by averaging the covariance matrix of the
observations over the objects.

3 Experiments

Prior to descriptor computation, all models have been
normalized so that descriptors are translation, rotation, flip-
ping and scale invariant. For translation invariance, the ob-
ject’s center of mass is considered as the origin of the co-
ordinate frame. For rotation and flipping invariance, we ap-
plied the continuous PCA algorithm [4]. For isotropic scale
invariance, we calculate a scale factor so that the average
point-to-origin distance is unity.

In each of the three runs that we have submitted to the
SHREC’07 Watertight Models Track, we have used three
different density-based descriptors: S1 = (R, R̂x, R̂y, R̂z),
S2 = (D, N̂x, N̂y, N̂z), and S3 = (R,A, SI). Again in
each of the runs, we have calculated the bandwidth matrix,
required by the KDE, by averaging the covariance matri-
ces of the observations over the meshes. We have used the
l1-metric to obtain three distance measures (each of which
corresponds to one of S1, S2, and S3) that we sum up to ob-
tain a final dissimilarity value between each pair of objects.
The runs differ in the following aspects:

Run 1. The mesh is reoriented so that the angle between
radial and normal directions at a surface point is always
acute.

Run 2. The orientation of the mesh is kept as given by
the list of triangles and the radial-normal alignment feature
is defined with the absolute value, i.e., A =

∣∣∣〈R̂, N̂
〉∣∣∣ ∈

[0, 1].
Run 3. The orientation of the mesh is kept as given by

the list of triangles and the radial-normal alignment feature
is defined without the absolute value, i.e., A =

〈
R̂, N̂

〉
∈

[−1, 1].
The DCG performance of these runs on the SHREC’07

Watertight Database are 85.0%, 84.0%, and 84.9% respec-
tively. As we have pointed out earlier in this section, these
results have been obtained using the l1-metric. However,
as we explain in the sequel, the discrimination ability of
S1- and S2-descriptors can be further increased by exploit-
ing a certain property of the directional features R̂ and N̂
involved in these descriptors respectively. Since these fea-
tures are explicity parameterized by Cartesian coordinates,

i.e., R̂ = (R̂x, R̂y, R̂z) and N̂ = (N̂x, N̂y, N̂z), an error
in the labeling or the sign of x-,y- or z-axes alters the re-
sulting pdf completely, leading to an unreliable descriptor.
PCA-based normalization methods assign the axes based on
the eigenvalue of the covariance matrix, and if two eigenval-
ues are close to each other there remains an ambiguity about
which is the correct one. Assigning a sign to an axis is also
problematic.

A matching scheme to circumvent discrimination errors
to such undesirable situations can be implemented by con-
sidering all possible configurations of the Cartesian coordi-
nate system. The first axis can be labeled as one of the 6
elements of the set {x+, x−, y+, y−, z+, z−}, let this be
x+; the second axis can be labeled as one of the 4 elements
of the set {y+, y−, z+, z−}, let this be y+; finally the re-
maining axis can be labeled as either z+ or z−. Clearly,
there are 6× 4× 2 = 48 such configurations. A naive way
to achieve invariance against mislabelings is to compute, for
a given mesh, 48 different descriptors each of which corre-
sponding to a fixed coordinate labeling. The dissimilarity
between two objects can then be calculated as the minimum
of 48 distance values obtained by holding one descriptor
fixed and alternating the other over the 48 configurations.
Such a naive approach is computationally and memory-wise
impractical.

Hopefully, since the target sets of the R̂- and N̂-features
arise from a uniform sampling of the unit 2-sphere by oc-
tahedron subdivision [6], a descriptor corresponding to a
certain labeling of the coordinate system can be derived
from one another by just permuting the entries appropri-
ately. To give an example, let tn = (tn,x, tn,y, tn,z) be a
fixed target in the target set RR̂ ∈ S2 (or RN̂ ∈ S2 iden-
tically). Octahedron subdivision ensures that, for instance,
tn′ = (tn,y, tn,x, tn,z) is also in the target set (actually, all
the 48 possibilities are in the target set). Thus, evaluating 48
distance values between two descriptors as described above,
is just a matter of holding one descriptor fixed and permut-
ing the entries of the other appropriately. The final dissimi-
larity value is simply the minimum among these 48 distance
values. This metric adds a factor of 48 to the overall match-
ing complexity, way smarter then calculating and storing 48
descriptors each of which corresponding to a different la-
beling of the coordinate system.

The improvements gained by the matching scheme are
tabulated in Table 1 for each of the runs. In this table, we
provide DCG figures corresponding to single descriptors S1

and S2 as well. Observe that, in all runs/cases, the improved
matching scheme does indeed improve the discrimination as
measured by the DCG gain, defined as percent increase in
DCG. It appears that S1 benefits more from this improve-
ment than S2, DCG gains for Run 1 being 4.8% and 2.9%
respectively. Enriched by the S3-descriptor (which is in-
variant to all affine transformations but scale through the
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Table 1. DCG Performance of the Improved
Matching Scheme
Run Desc. l1 Imp. l1 Gain (%)

1 S1 74.4 78.0 4.8
S2 80.3 82.6 2.9

S1 + S2 80.9 84.2 4.1
S1 + S2 + S3 85.0 86.7 2

2 S1 73.2 76.8 4.9
S2 78.7 81.0 2.8

S1 + S2 80.1 83.1 3.7
S1 + S2 + S3 84.0 85.4 1.7

3 S1 73.3 76.8 4.8
S2 78.9 81.1 2.8

S1 + S2 80.1 83.1 3.7
S1 + S2 + S3 84.9 86.3 1.6

R-component), the overall descriptor in Run 1 achieves a
DCG of 86.7% on the Watertight Models database.

It’s also instructive to take a classwise look to the DCG
performance in order to see what kind of discrimination
can be achieved by the density-based framework on a
database where classification semantics are topologically-
guided (see Figure 1 in the main paper in this proceed-
ings). In Table 2, we display classwise averaged DCGs
and their standard deviations. From this table, we observe
that the density-based descriptor performs nearly perfectly
for the “Ant” and “Plier” classes with DCGs of 99.3% and
99.2% respectively. Worst DCG is obtained for the “Vase”
class (DCG=61.4%) with a rather high standard deviation
of 12.5%, indicating an inhomogeneity of the shapes within
the class. The latter fact corroborates with the visual inves-
tigation of Figure 1 in the the main paper in this proceed-
ings: the “Vase” instances differ significantly in geometry
and appearence.

4 Conclusion

Discrimination performance of density-based descrip-
tors have already been established in [1, 2] through ex-
periments on two different databases: Princeton Shape
Benchmark and Sculpteur (see references therein for these
databases). In the present paper, we have experimentally
demonstrated that the density-based framework provides
adequate discrimination also on the SHREC’07 Watertight
database. The density-based description framework being
geometrical by foundation, it’s comforting to see that it en-
ables effective retrieval on a database where shape equiva-
lences are topologically-induced. We also remark that our
framework is computationally very efficient [1, 2] thanks to
the fast Gauss transform [5], it’s not demanding in terms of

Table 2. Classwise DCG Performance of the
Density-Based Framework

Class Avg. DCG (%) St. Dev. DCG (%)
Ant 99.3 1.1

Armadillo 93.8 10.5
Bearing 74.8 14.9

Bird 73.0 11.5
Bust 82.7 9.9
Chair 98.3 1.7
Cup 85.8 16.3
Fish 94.7 6.7

Four-legged 93.2 10.3
Glasses 88.9 11.1
Hand 79.3 13.0

Human 85.2 11.6
Mechanic 95.9 10.8
Octopus 70.0 14.0

Plane 93.1 14.5
Plier 99.2 1.2

Spring 80.0 17.1
Table 84.4 21.6
Teddy 98.7 1.8
Vase 61.4 12.5

mesh quality or degeneracies, and it’s able to support multi-
ple 3D modalities be they 3D point clouds, meshes, or para-
metric surfaces. Our research on effective 3D retrieval con-
tinues with score fusion and similarity learning, guided by
statistical techniques, which are able to incorporate domain-
specific classification semantics to the matching scheme.
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1. Introduction

For the Watertight Models Track of SHREC’07 (SHape
REtrieval Contest 2007 organized by the Network of Excel-
lence AIM@SHAPE), we tested our new 2D/3D approach
based on depth lines (DLA) with two different similarity
measures.
Our method is detailed in the article “3D Model Retrieval
based on Depth Line Descriptor” [1] with the following ab-
stract: “In this paper, we propose a novel 2D/3D approach
for 3D model matching and retrieving. Each model is repre-
sented by a set of depth lines which will be afterward trans-
formed into sequences. The depth sequence information
provides a more accurate description of 3D shape bound-
aries than using other 2D shape descriptors. Retrieval is
performed when dynamic programming distance (DPD) is
used to compare the depth line descriptors. The DPD leads
to an accurate matching of sequences even in the presence
of local shifting on the shape. Experimentally, we show ab-
solute improvement in retrieval performance on the Prince-
ton 3D Shape Benchmark database.”

2 Depth Line Descriptor Extraction

Our 3D shape retrieval system compares 3D models
based on their visual similarity using depth lines extracted
from depth images: The process first normalizes and scales
3D model into a bounding box. Then, it computes the set of
N × N depth-buffer images associated to the six faces of
the bounding box. The system then generates 2 × N depth
lines per image, considering each depth image as a collec-
tion of N horizontal and N vertical depth lines. Finally, each
depth line is encoded in a set of N states called sequence of
observations. The shape descriptor consists in the set of 6
× 2 × N sequences, with N = 32.
Please see our paper [1] for further details.

3 Experimental results

We submitted two runs:

1. In Run1 (DLA DPD), to perform retrieval results, we
tested the dynamic programming distance (DPD) be-
cause it tolerates some local shifting on the shape. We
used here the Needleman-Wunsch algorithm [2].

2. In Run2 (DLA HD), to compare the depth line descrip-
tors, we used the Hamming distance (HD) which re-
turns the number of corresponding state positions that
differ.

Our method does not need to have watertight models as
input, as we work on the depth buffer images of the 3D
objects. Thus it can be used on more general databases,
such as the Princeton Shape Benchmark database [3]. We
choose not to mix our descriptors with others, which may
have increased the overall performance, but to test here the
performance of our depth line approach to detect the classes
of shapes where they are efficient and the classes of objects
where other descriptors may be more suitable.
The experimental results show that:

• Run1 always performs better than Run2.

• Our descriptors are very well adapted to classes of ob-
jects that are homogeneous in shapes, such as tables,
chairs and bearing. In fact, Run1 obtained the best
precision-recall curve on table class in the Watertight
Models Track of SHREC 2007.

• Articulated objects, such as human, armadillo, teddy,
ant, glasses, hand and octopus classes present a great
variation of shape inside their classes. As this varia-
tion is related to the structure of the objects, they are
adapted to skeleton-based descriptors.

The presence of many classes of articulated objects in
the watertight models track has influenced the overall per-
formance of our approach.

31



DLA_DPD Horse 0.2687 0.2846 0.3069 0.3112 0.3324 0.3492 0.3632 0.3709 0.3832

DLA_HD Horse 0.3553 0.3826 0.3977 0.4284 0.4462 0.4680 0.4724 0.4851 X    0.5038

DLA_DPD Ant 0.3126 0.3245 0.3248 0.3409 0.3715 0.3743 0.4052 0.4253 0.4254

DLA_HD Ant 0.4211 0.4243 0.4581 0.4648 0.5055 0.5242 0.5386 X    0.5445 0.5471

Figure 1. Examples of similarity search. For each query (from “Four-legged animals class” and “Ants
class”), we show the top 9 objects matched with DLA approach (using DPD and HD). The similarities
between the query models and the retrieved models are given below corresponding images. X and
x indicate that the retrieved models belong or don’t belong to the query’s class, respectively.
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Abstract

We describe in this paper two methods for 3D shape in-
dexing and retrieval that we apply on two data collections
of the SHREC - SHape Retrieval Contest 2007: Watertight
models and 3D CAD models. Both methods are based on a
set of 2D multi-views after a pose and scale normalization
of the models using PCA and the enclosing sphere. In all
views we extract the models silhouettes and compare them
pairwise. In the first method the similitude measure is ob-
tained by integrating on the pairs of views the difference be-
tween the areas of the silhouettes union and the silhouettes
intersection. In the second method we consider the exter-
nal contour of the silhouettes, extract their convexities and
concavities at different scale levels and build a multiscale
representation. The pairs of contours are then compared by
elastic matching achieved by using dynamic programming.
Comparisons of the two methods are shown with their re-
spective strengths and weaknesses.

1 Introduction

We proposed two methods for the 3D Shape Retrieval
Contest 2007. Each one is based on a multi-view approach
which keeps 3D model coherence by considering simulta-
neously a set of 2D images in specific view directions. The
various silhouettes of a model being strongly correlated,
using a set of them help to better discriminate one model
among others.

First of all, we have to get a robust normalization of the
model pose and model scale in order to remain invariant to
various geometrical transformations (translation, rotation,
scaling). We used a Principal Continuous Component Anal-
ysis [4][5] and the smallest enclosing sphere [3] to solve
these problems.

The first method is based on silhouettes intersection. We

capture a set of views of a model and we extract its silhou-
ette in each view. The distance between two silhouettes is
chosen as equal to the number of pixels that are not common
to the two silhouettes intersection. The distance between
two models is defined as the sum of the distances between
their two sets of silhouettes.

The second approach is based on a multiscale represen-
tation of the external closed contour of non rigid 2D shapes
presented in [1]. We capture a set of views of a model and
for each view we extract and normalize the external border
of the silhouette, and we buid its multi-scale shape repre-
sentation where for each contour point we store information
on the convexities and concavities at different scale levels.
We then search the optimal elastic match between each pair
of silhouettes by minimizing the distance between matched
contour points and we integrate the distance over the silhou-
ettes pairs.

Section 2 presents the normalization method for the 3D
models. Section 3 describes the intersection methods and
section 4 presents the contour convexities and concavities
approach. Experimental results are shown in section 5.

2 Model normalization

Before comparing 3D models we need to proceed to a ro-
bust normalization of their pose and scale in order to remain
invariant to various geometrical transformations (transla-
tion, rotation, scaling). For the center and the scale, we
use the smallest enclosing sphere S [3] (see Figure 1). The
normalization then becomes:

x =
x− cx(S)

d(S)
, y =

y − cy(S)
d(S)

and z =
z − cz(S)

d(S)

where d(S) is the diameter of S and ci(S), i = x, y, z are
the i-th coordinates of its centre. The use of the smallest en-
closing sphere has several advantages: it is fast to calculate,
it allows maximizing the model size inside the unit sphere
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Figure 1. Smallest enclosing sphere.

and then its silhouette size in any view direction, with the
guaranty that the silhouette remains inside the unit disc in-
scribed in the image domain associated to this view (no risk
of accidental cropping of the silhouette).

For the normalization of the model pose we use the Con-
tinuous Principal Component Analysis [4][5] which defines
and orientates the three principal axis of a model in a robust
way and at a very reasonable computation cost.

3 Intersection descriptor

3.1 Signature extraction

The various silhouettes of a model being strongly cor-
related, using a set of them help to better discriminate one
model among others [2]. For this, we can use any set of
view directions regularly distributed in space. We consider
here simply the three orthogonal views along the oriented
principal axis with parallel projections. A higher number of
views could be used but we limit it to 3 to keep a reduced
size for the shape descriptors.

We choose an image size of 256x256 for each silhouette.
This resolution gives a good tradeoff between precision and
computation time. To keep the maximum information from
a silhouette, the simplest way is just to keep its image (see
Figure 2). We will then compare two silhouettes by su-
perposing them and comparing their intersection with their
union. A silhouette being a binary image we can stored it
in a lossless compression format fast to read and to decode
when comparing silhouettes. The signature of a model is
then simply constituted by the three compressed silhouettes
corresponding to the three oriented principal directions.

Figure 2. Three silhouettes of a model.

3.2 Signature matching

The distance between two models is defined as the dis-
tance between their two sets of silhouettes. The three sil-
houettes of each set being sorted according the three princi-
pal axis, this distance is then just defined as the sum of the
distances of the three pairs of silhouettes, one pair per axis.
The distance between two silhouettes is chosen as equal to
the number of pixels that are non common to the two silhou-
ettes, i.e. the difference between the areas of the silhouettes
union and the silhouettes intersection (see Figure 3). This
measure can be computed very efficiently directly on the
files compressed with a simple run length encoding. The
distance computation between two models is then straight-
forward and fast. To answer a query we just measure its
distance to every database models and sort the list accord-
ingly (see Figure 4).

Figure 3. Intersections of two models. In black their
common parts, in blue the parts of the first model and
in red the parts of the second one

4 Contour convexities and concavities de-
scriptor

4.1 Signature extraction

We use 256x256 silhouettes for both the CAD and Wa-
tertight models tracks. We also test 64x64 silhouettes on
the Watertight models: this smaller image resolution allows
a reduction of the descriptor size and of the computation
time at the price of a stronger sampling noise leading to
a lower retrieval precision. The descriptor of a silhouette
contour C is obtained by normalizing the contour length
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Figure 4. 15 first results for shape retrieval us-
ing the intersection method on the Watertight model
database. The query 65.off is on the top left.

with 100 sampled contour points and by extracting convex-
ity/concavity information at each sampled contour point and
at 10 scale levels [1]. The representation can be stored in
the form of a 2D matrix where the columns correspond to
contour points (contour parameter u) and the rows corre-
spond to the different scale levels σ. The position (u, σ)
in this matrix contains information about the degree of con-
vexity or concavity for the contour point u at scale level
σ. The simplified boundary contours at different scale lev-
els are obtained via a curve evolution process. It should be
noted that we use the same number of sample contour points
at each scale. Let the contour C be parameterized by arc-
length u : C(u) = (x(u), y(u)), where u ∈ [0, N ]. The
coordinate functions of C are convolved with a Gaussian
kernel φσ of bandwidth σ ∈ {1, 2...σmax}. The resulting
contour Cσ becomes smoother with increasing σ value, un-
til finally the contour becomes convex (see Figure 5).

We propose a very simple measure for the convex-
ity/concavity of the curve. It is defined as the displace-
ment of the contour between two consecutive scale lev-
els. If we denote the contour point u at scale level σ as
p(u, σ), the displacement d(u, σ) of the contour between
two consecutive scale levels at point p(u, σ) can be defined
as the Euclidian distance between positions of p(u, σ) and
p(u, σ − 1).

4.2 Signature matching

When comparing two contours A and B, it is neces-
sary to examine the distance between each sampled contour
point of both contours. If two contour points uA and uB

are represented by their multi-scale features dA(uA, σ) and
dB(uB , σ) respectively, then the distance between the two

Figure 5. Example of extracting the MCC shape
representation: (a)-original shape image, (b)-filtered
versions of the original contour at different scale lev-
els, (c)-final MCC representation for 100 contour
points at 14 scale levels.

contour points can be defined as:

d(uA, uB) =
1
K

K∑
σ=1

|dA(uA, σ)− dB(uB , σ)|

where K is the number of scale (here 10).
As part of the matching process, the best correspondence

between contour points must be determined. We use a dy-
namic programming method with an N ∗N distance table to
conveniently examine the distances between corresponding
contour points on both shapes. The columns represent con-
tour points of one shape representation and the rows repre-
sent the contour points of the other. Each row/column entry
in the table is the distance between two corresponding con-
tour points calculated according to the previous equation.

Finding the optimal match between the columns corre-
sponds to finding the lowest cost diagonal path through the
distance table (see Figure 6 where the contours feature vec-
tors are illustrated as grey levels along each axis).

The three silhouettes of each set being sorted according
to the three principal axis, the distance between two models
is just defined as the sum of the distances of the three pairs
of silhouettes, one pair per axis (see Figure 7).

5 Experimental results

5.1 Experimental results for Watertight
track

We propose three runs for the SHREC’07 Watertight
models track:
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Figure 6. Matching of two MCC representations by
using dynamic programming.

Figure 7. 15 first results for shape retrieval using
the contour convexities and concavities method on the
Watertight model database. The query 186.off is on
the top left.

• Run 1: The contour convexities and concavities de-
scriptor, with 3 silhouettes aligned with the principal axis
and a resolution of 256x256 pixels for each silhouettes.

• Run 2: The contour convexities and concavities de-
scriptor, with 3 silhouettes aligned with the principal axis
and a resolution of 64x64 pixels for each silhouettes.

• Run 3: The multi-view intersection descriptor, with 3
silhouettes aligned with the principal axis and a resolution
of 256x256 pixels for each silhouettes.

The contour convexities and concavities descriptor pro-
vides better results than the multi-view intersection descrip-
tor, see Figure 8 (top and bottom). The two different image
resolutions produce practically the same results, see Figure

Figure 8. 15 first results for the Watertight query
107.off. Top: run 1, Middle: run 2, Bottom: run 3.

8 (middle). We present in Table 1 the classwise DCGs for
each run. We observe that run 1 and run 2 perform per-
fectly results for the plier class. For the contour convexities
and concavities descriptor the worst DCGs are obtained for
spring and vase classes. These two classes contains models
with heterogeneous shapes. For the multi-view intersection
descriptor the worst DCG is obtained for armadillo and oc-
topus.

5.2 Experimental results for CAD track

We propose two runs for the SHREC’07 CAD models
track:

• Run 1: The contour convexities and concavities de-
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Class DCG Run 1 DCG Run 2 DCG Run 3
airplane 92.9 93.6 66.5

ant 91 89.7 46.7
armadillo 82.4 80.3 46.3
bearing 86.1 80.1 80.8

bird 87.1 89.7 61.6
buste 87 85.9 66.3
chair 92 93.4 87.7
cup 77.2 77.1 73.7
fish 94.3 93.2 76.9

four leg 90.4 85.5 68.1
glasses 90.8 91 92.5
hand 81.8 77.2 56.6

human 82.8 77.4 68
mechanic 89.1 91 85.6
octopus 79.2 74.2 41.2

plier 100 100 97
spring 55.3 54.5 50.6
table 77.7 81.6 81.9
teddy 95.6 96 80
vase 52.2 53.7 56.3

Table 1. Classwise DCGs performance for the three
runs on the Watertight models.

scriptor, with 3 silhouettes aligned with the principal axis
and a resolution of 256x256 pixels for each silhouettes.

• Run 2: The multi-view intersection descriptor, with 3
silhouettes aligned with the principal axis and a resolution
of 256x256 pixels for each silhouettes.

The contour convexities and concavities descriptor pro-
vides again better results than the multi-view intersection
descriptor (see Figure 9). The first method is more robust
against small variations of the shape and against the mir-
rored silhouettes problem. But the computation time per
query model is very different between the two methods:
with the contour convexities and concavities descriptor the
CPU time per query is ∼ 20 s and with the multi-view in-
tersection descriptor ∼ 0,06 s.

6 Conclusion

We have tested two different methods on the SHREC’07
contest. We observe that we obtain the best results with
the convexities/concavities descriptor. We notice that the
intersection method is not very robust with small defor-
mations of the models. The contour convexities and con-
cavities method needs much more computation time, but
this weakness could be strongly reduced by optimizing the
source code.

Figure 9. 15 first results for the CAD query 40.stl.
Top: run 1, Bottom: run 2.
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Abstract 

 
The method used for the CAD track, the watertight 

models track and the one method of proteins track, is 
based on the Spherical Trace Transform. After the 
proper positioning of the 3D object using translation 
and scaling normalization techniques, the object is 
fully decomposed into a set of planes tangential to a 
set of concentric spheres. In this new domain, a new 
set of functionals is applied, resulting in a descriptor 
vector which is completely rotation invariant, and thus 
suitable for 3D model matching. The matching is 
based on Minkowski L1 Distance.  
 
1. Introduction 

The large amount of the available 3D models and 
their increasingly important role for many areas such 
as medicine, engineering, architecture, graphics design 
etc, showed up the need for efficient data access in 3D 
model databases. An important question that arises is 
how to search efficiently for 3D objects into many 
freely available 3D model databases. A query by 
content approach seems to be the simpler and more 
efficient way. The method is briefly presented in the 
sequel. A detailed description of the method can be 
found in [1] for 3D models, and in [2] for protein 
classification. 
 
2. Watertight and CAD track 
 
2.1. Descriptor Extraction Method 
Every 3D object is expressed in terms of a binary 
volumetric function. In order to achieve translation 
invariance, the center of mass of the 3D object is 
calculated and the model is translated so that its center 
of mass coincides with the coordinates system origin. 
Scaling invariance is also accomplished, by scaling the 
object in order to fit inside the unit sphere. Then, a set 
of concentric spheres is defined. For every sphere, a 
set of planes which are tangential to the sphere is also 
defined. Further, the intersection of each plane with the 
object’s volume provides a spline of the object, which 

can be treated as a 2D image. Next, 2D rotation 
invariant functionals F are applied to this 2D image, 
producing a single value. Thus, the result of these 
functionals when applied to all splines, is a set 
functions defined on every sphere whose range is the 
results of the functional. Finally, a rotation invariant 
transform T is applied on these functions, in order to 
produce rotation invariant descriptors. For the needs of 
the SHREC, the implemented functionals F are the 2D 
Krawtchouk moments, the 2D Zernike Moments and 
the Polar Fourier Transform, while the T function is 
the Spherical Fourier Transform. 
 
2.2. Matching 
Firstly, the descriptors are normalized so that their 
absolute sum is equal to 1. Then, the matching is based 
on the Minkowski L1 distance. 
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Abstract

This paper presents an application of the augmented
Multiresolution Reeb graph (aMRG) [3] for shape retrieval
of watertight 3D models and CAD models. The method is
based on a Reeb graph construction which is a well-known
topology based shape descriptor. Using multiresolution
property and additive geometrical and topological informa-
tions, aMRG has shown its efficiency to retrieve high qual-
ity 3D models [4]. The SHREC - SHape REtrieval Contest
2007 Watertight Models track data collection is composed
of 20 classes of 20 models (sunglasses, humans, ants, etc.).
Most classes contain deformed models with same topology.
The Engineering track proposed by Purdue is composed of
3D CAD models. The models have high genus, rounding
features (fillets, chamfers), and presence of internal struc-
ture. We propose to evaluate the performance of the aMRG
with new embedded topological features [5] to retrieve the
different classes of both data collections. Our experiments
show interesting results. We give comments on the retrieval
performed by aMRG compared to the ground truth classifi-
cation. Our approach obtained the best results at the con-
test on the Watertight Models track.

1 Introduction

Our paper proposes a scheme to retrieve similar shapes
in collections of watertight 3D models and CAD models us-
ing a Reeb graph based approach. In the framework of the
SHREC - SHape REtrieval Contest 2007 Watertight Models
track, the data collection consists on 400 watertight models
(20 classes of 20 similar models). As most classes are com-
posed of deformed objects with same topology, the Reeb
graph suits well to describe their shape. In the framework
of the Engineering track, the data collection is composed
of 866 CAD models. The models are watertight and have
particular topology (high genus). Therefore it is interesting
to study the Reeb graph performance for describing their
shape as well. The graph is built using a Morse function
µ based on the mesh connectivity. The surface of the ob-

Figure 1. aMRG is powerful to retrieve simi-
lar 3D models with various deformations and
same topology. Here, the table presents the
most similar models to a query. The query
is the model on top-left. Distance to query is
shown under each compared models. Similar
sunglasses can be retrieved, even strongly
deformed.

ject is divided in regions according to the values of µ, and
a node is associated to each region. The graph structure
is then obtained by linking the nodes of the connected re-
gions. Then a multiresolutional Reeb graph can be con-
structed hierarchically, based on a coarse-to-fine approach
node merging [1]. Keeping advantage of the multiresolu-
tional representation, the augmented multiresolution Reeb
graph (aMRG) [3] is an enhanced Reeb graph which em-
beds topological, geometrical and visual (color or texture)
information in each graph node. Afterwards similarity be-
tween two aMRGs can be computed to retrieve the most
similar nodes. Its efficiency has been tested on high quality
3D model databases acquired from art museums [4]. Re-
cently, the aMRG was adapted for full topology matching
of human models in 3D video sequence [5]. We propose to
evaluate the performance of the aMRG with the new topo-
logical features to retrieve the data collection classes.

As shown in Figure 1, the method is able to retrieve simi-

39



lar 3D models. Three different runs are proposed fr the Wa-
tertight Models track, and four different runs are proposed
for the Engineering track of the SHREC 2007.

The next section presents an overview of the aMRG. Sec-
tion 3 presents our experimental results on the watertight
models track. Section 4 gives comments on the Watertight
Models track contest results. Section 5 presents our exper-
imental results on the Engineering track. Section 6 gives
comments on the Engineering track contest results.

2 Overview of the aMRG

According to the Morse theory, a continuous function
defined on a closed surface characterizes the topology of the
surface on its critical points. Therefore, a Reeb graph can be
obtained assuming a continuous function µ calculated over
the 3D object surface.

In both tracks, models are defined by their surface and
represented as 3D triangular meshes with vertices located
in a Cartesian frame. We chose the function µ proposed
in [1], which is defined as the integral of the geodesic dis-
tance g(v, p) from v to the other points p of the surface:

µ(v) =
∫

p∈S

g(v, p)dS. (1)

This function µ has the property to be invariant to rotations.
Its integral formulation provides a good stability to local
noise on surface and gives a measure of the eccentricity of
the object surface points. A point with a great value of µ
is far from the center of the object. A point with a minimal
value of µ is close to the center of the object. Therefore µ is
normalized to µN = µmax−µmin

µmax
, so that values of µ keep

an information on the distance to the object center. The cor-
responding Reeb graph is then obtained by iteratively parti-
tioning the object surface into regular intervals of µN values
and by linking connected regions. For each interval, a node
is associated to each different set of connected triangles.

To construct a Reeb graph of R levels of resolution, µN

is subdivided into 2R intervals from which the object sur-
face is partitioned at the highest level of resolution. Af-
terwards, using a hierarchical procedure, Reeb graphs of
lower resolution levels are obtained by merging intervals
by pairs [1]. The multiresolutional aspect results from the
dichotomic discretization of the function values and from
the hierarchical collection of Reeb graphs defined at each
resolution. Topology is more precisely recovered at higher
resolutions (cf. Figure 2).

The original approach, mainly based on the 3D object
topology, is not accurate enough to obtain satisfying match-
ing. Therefore in [3, 4], the multiresolution Reeb graph
has been augmented by merging global and local geomet-
ric properties and visual properties extracted from the ob-

Figure 2. a) 3D model. b) Values of µ function
on the model surface and Reeb graph at res-
olution r = 4. c) Reeb graphs at resolution
r = 1, 2, 3 and 4. Topology is more precisely
recovered at higher resolutions.

ject surface region S(m) associated to each node m. Topo-
logical aspects of the graph matching procedure was ex-
tended, and similarity calculation with the new features was
adapted. The different features are:

• the relative volume of S(m),

• a statistic measure of the extent of S(m),

• a statistic of the Koenderink shape index for local cur-
vature estimation on S(m),

• a statistic of the orientation of the triangle normals as-
sociated to S(m),

• a statistic of the texture/color mapped on S(m) (not
used here).

The choice of these attributes has been guided by the lit-
terature on 3D content-based retrieval [2]. The result is a
flexible multiresolution and multicriteria 3D shape descrip-
tor including merged topological, geometrical and colori-
metric properties.

In order to obtain a better control of the node matching,
graph topology was exploited in [5]. Topological features
can be deduced by the edge orientations given by µ values.
In addition, multiresolution gives valuable information to
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characterize the global shape of models. The shape descrip-
tion is intuitive and completely topological. Its efficiency
has been tested as described in the next section.

3 Experiments on Watertight Models track

aMRG calculations were performed on a laptop with
Pentium(R) M processor 1.60 GHz and RAM 512 Mo.
aMRG were computed with resolution up to r = 5. The
computation time depends on the number of vertices, and
the complexity of the model. For example, aMRG of water-
tight model 1.off which contains 15000 vertices was com-
puted in ∼ 20 s. And aMRG of model 3.off which contains
6833 vertices was computed in ∼ 12 s.

The calculation of the function µ remains the most
time consuming, even with the Dijkstra coding scheme of
O(NlogN) complexity on N vertices. Our experiments
have pointed out the importance of the choice of the func-
tion µ. The invariance to rotation properties was necessary
for the watertight model database.

For the SHREC 2007 Watertight Models track, three
runs were proposed with different aMRG resolution:

• Run1: similarity are computed till resolution r = 3

• Run2: similarity are computed till resolution r = 4

• Run3: similarity are computed till resolution r = 5

Results are slightly similar. The main difference is the
computation time which is a little bit longer for higher reso-
lutions. The matching procedure based only on topological
information is well adapted for non oriented object. Using
geometrical information can sharpen the retrieval in some
case. Computation time for retrieval of a query on the wa-
tertight model database of 400 models at r = 5 is ∼ 6 s.
Computation time for a query at r = 3 is ∼ 3 s.

4 Comments on Watertight Models track
contest results

Our approach obtained the best results amongst the con-
test participants at the SHREC 2007 Watertight Models
track (cf. Figure 3). The data collection is composed of
classes with quite heterogeneous retrieval difficulty. Some
classes contain some different models that can lead to bad
retrieval performances. Looking at the contest results, we
can observe that aMRG is very robust to shape deforma-
tion. In general, aMRG returns unsatisfactory retrieval re-
sults only on some very rare queries on the watertight mod-
els data collection.

Our method performed far better retrievals than other
methods on the classes: amardillo (same model strongly

Figure 3. Watertight Models Track of SHape
REtrieval Contest 2007 Precision-Recall re-
sults. aMRG performed better than other
methods.

deformed), octopus, spectacles and springs (models with re-
markable topology). We got a perfect retrieval on the teddy-
bear class. Results were very good on the classes: ants (re-
markable topology), fishes, blends, cups and pliers as well.
Results were good on the classes: aircrafts, chairs, heads,
and vases. Results were average compared to other methods
on the classes: birds, bearings, four limbs, hands, humans,
and tables.

Figure 4. Run 1 performed slightly better than
Run 2 and Run 3.

In our matching procedure we use several weighted pa-
rameters that are experimentally determined. If some pa-
rameters are not well set, then we can obtained some mis-
match like a human with a four limb (which have the same
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topology). Therefore we believe parameters can be opti-
mized to refine the similarity calculation. Moreover, as a
matter of fact, Run 1 (aMRG at resolution r = 3) performed
better than Run 2 and Run 3 (corresponding to r = 4 and
r = 5 respectively) as can be seen on Figure 4. Using higher
resolutions give more precision in the retrieval process and
similarity calculation but can introduce noises: fine details
on model surface can be matched as well and can increase
the similarity score whereas it should not. This can be en-
hanced by filtering the graphs before the matching proce-
dure.

5 Experiments on Engineering track

aMRG calculations were performed on a laptop with
Pentium(R) M processor 1.60 GHz and RAM 512 Mo.
aMRG were computed with resolution up to r = 5. The
computation time depends on the number of vertices, and
the complexity of the model. For example, aMRG of CAD
model bat gear2.stl which size is 124 K was computed in
∼ 2 s. And aMRG of CAD model 72t 12d 05w.stl which
size is 731 K was computed in ∼ 5 s.

The calculation of the function µ remains the most
time consuming, even with the Dijkstra coding scheme of
O(NlogN) complexity on N vertices. Our experiments
have pointed out the importance of the choice of the func-
tion µ. The invariance to rotation properties was necessary
for the Purdue CAD model database.

For the SHREC3D CAD models 2007, four runs were
proposed with different parameters:

• Run1: similarity are computed till resolution r = 4,
and aMRG matching contains only topological infor-
mation.

• Run2: similarity are computed till resolution r = 3,
and aMRG matching contains only topological infor-
mation.

• Run3: similarity are computed till resolution r = 4,
and aMRG matching contains geometrical and topo-
logical information.

• Run4: similarity are computed till resolution r = 3,
and aMRG matching contains geometrical and topo-
logical information.

Results are slightly similar. The main difference is the
computation time which is a little bit longer for higher res-
olution. The matching procedure based only on topological
information is well adapted for non oriented object. Using
geometrical information can sharpen the retrieval in some
case. Computation time for retrieval of query 40 on the
CAD database of 866 models at r = 4 is ∼ 5 s. Com-
putation time for the same query at r = 3 is ∼ 3 s.

6 Comments on Engineering track contest
results

aMRG is based on a coarse-to-fine approach. Hence we
care about global shape as well as local details. In par-
ticular, model topology has a strong impact on the shape
description. Therefore for example, a CAD model with 3
holes will not be described as similar as a model with 5
holes. This could obviously be interpreted as a limitation
of our approach, as well as a strength. In deed the ground
truth classification reveals that the similarity concept of the
SHREC for CAD models 2007 data collection is not defined
exactly as for our aMRG approach. For example some mod-
els from classes round change at end and long pins are re-
trieved as similar by aMRG, whereas these classes were de-
fined as different by the ground truth classification (cf. Fig-
ures 5 and 6). And similarly, some models from classes
simple pipes and 90 degree elbows are retrieved together.

Figure 5. Results of Query 7. Models from
classes round change at end and long pins are
retrieved as similar by aMRG.

Besides aMRG obtains good retrieval performance on
the simple pipes class (cf. Figure 12 in Appendix). In
the other hand, shape models of the class 90 degree elbows
seems to be too heterogeneous to be well retrieved by our
approach (cf. Figure 7). More generally, we have ob-
served that aMRG performances on the CAD data collec-
tion depend on the query type: for example, moderate for
90 degree elbows class, and very good for u shaped parts
class (cf. Figures 12 and 13 in Appendix). For further in-
vestigation, it should be worthwhile to optimize the weight
of the different parameters embedded in the aMRG nodes.
In addition, the matching process could be extended to Reeb
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Figure 6. Ground truth classification of the
class round change at end.

graphs with different topology. Thus, the retrieval of CAD
models with different number of holes would be improved.

Figure 7. The class 90 degree elbows contains
models with heterogeneous shape.

7 Conclusion

We have presented an application of the augmented
Multiresolution Reeb graph (aMRG) for the SHape RE-
trieval Contest 2007 (SHREC) for Watertight Models and
for CAD models (Engineering track). aMRG is a topol-
ogy based shape descriptor. The method uses a multires-
olution scheme for the graph matching process. Moreover
additional topological and geometrical features are used to
improve the matching. The Watertight Models collection
models have remarkable topology. We obtained interest-
ing results with our approach. A full topological approach

was used for the graph matching procedure and three runs
at different aMRG resolution were proposed. We obtained
the best results amongst the contest participants. In gen-
eral, the approach is efficient to retrieve classes of deformed
models, especially with same topology. It is more diffi-
cult to retrieve a class of objects with different shapes (e.g.
glasses and mugs are not considered as similar by our ap-
proach). As lots of CAD models of the data collection have
complex shape, as well it was interesting to evaluate the
aMRG performance. In particular, we compare the aMRG
retrieval results with the ground truth classification. Four
runs with different parameters were proposed. We have ob-
served that some classes were well retrieved by aMRG (e.g.
simple pipes, u shaped parts), whereas some classes were
not adapted to our approach (90 degree elbows). Model
topology plays a major role in our matching process, as well
as global shape. Hence CAD models from a same class with
different numbers of holes, or with significative shape dif-
ference are not considered as similar by the aMRG method.
For further evaluations, the weights of the different embed-
ded attributes could be optimized to improve the similarity
scores.
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Appendix 1

Figure 8 presents a query results on the amardillo model.
aMRG resolution is 3. Similar models are retrieved, even
with strong deformations. Figure 9 presents a query results
on an ant model. aMRG resolution is 3. The retrieval is very
efficient thanks to the model topology. Figure 10 presents
a query results on a chair model. aMRG resolution is 4.
Chairs are well retrieved. Figure 11 presents a query results
on a teddybear model. aMRG resolution is 4. Teddybears
are very well retrieved, even models with missing arms or
legs.

Figure 8. Query 62 with run 1. aMRG resolu-
tion is 3. Similar models are retrieved, even
with strong deformations.

Figure 9. Query 15 with run 1. aMRG reso-
lution is 3. Ants models from the database
are very well retrieved due to their remark-
able topology.

Figure 10. Query 6 with run 2. aMRG resolu-
tion is 4. Chairs are well retrieved.

Figure 11. Query 137 with run 2. aMRG res-
olution is 4. Teddybears very are well re-
trieved, even models with missing arms or
legs.

Appendix 2

Figure 12 presents a query results on a simple pipes
model with run 4. aMRG resolution is 3, and the graph
matching approach contains geometrical and topological
features. The retrieval contains model from the correct class
and some models from class 90 degree elbows having sim-
ilar shape.

Figure 13 presents a query results on a u shaped parts
model with run 1. aMRG resolution is 4, and the graph
matching approach is fully topologic. The class is very well
retrieved.
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Figure 12. Query 1 from simple pipes class with
run 4. aMRG resolution is 3, and the graph
matching approach contains geometrical and
topological features. The retrieval contains
model from the correct class and some mod-
els from class 90 degree elbows having similar
shape.

Figure 13. Query 40 from u shaped parts class
with run 1. aMRG resolution is 4, and the
graph matching approach is fully topologic.
The class is very well retrieved.

Figure 14. Left: 3D mesh model of backdoor.
Right: values of function µ on the surface,
with Reeb graphs at resolution r = 4. The
graph structure contains topological and ge-
ometrical information.

Figure 15. Good retrieval of backdoor using
aMRG.
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Abstract 
The distance measure, in addition to the shape 

feature is a key factor in shape based 3D model 
retrieval. We employed a database adaptive distance 
measure for 3D model retrieval in the SHREC 2007 
CAD track. The method described in this paper uses a 
feature dimension reduction based on an unsupervised 
learning of features to produce salient, lower 
dimensional feature from the original feature. Our 
method also combines a multiresolution shape 
comparison approach with the database adaptive 
distance measure. Our experiments the SHREC 2007 
CAD track showed that both adaptive distance 
measure and multiresolution shape comparison 
approach added a few percent each to the original 
shape feature. Our method came in first in the SHREC 
2007 CAD track despite the fact that the distance 
measure was trained by using a set of “generic” 3D 
models that are not CAD specific. 

1. Introduction 
Two of the most important components in a hape-

based 3D model retrieval system [13] are the shape 
feature and the distance measure used. Intuitively, 
shape similarity decision would depend on shapes of 
models in the database to be compared, or a shape of 
the specific model to be queried. For example, a 
feature might excel at retrieving a class of models but 
not for the others classes. The shape similarity decision 
would also have inter-user variations as well intra-user 
variation depending on intention of the specific query. 
Despite these possible variations, most of the previous 
method uses a fixed feature and a fixed distance 
measure. Several researchers experimented with 
relevance feedback for on-line, interactive adaptation 
of distance measure [6] while the other tried query-
adaptive combination of distances generated from 
multiple features [2].  

Xhaofei He et al proposed, in the context of 2D 
image retrieval, a distance measure that adapts to the 

database of 2D images by using unsupervised learning. 
The method learns the non-linear subspace, or 
manifold, of features from large number of (unlabeled) 
2D images. The dimension of an input feature is 
reduced by projecting the feature onto the manifold. A 
distance among a pair of dimension reduced and 
“salient” features corresponds to a geodesic distance 
on the manifold. He et al used the Laplacian 
Eigenmaps (LE) proposed by Belkin, et al [1] to learn 
the non-linear manifold. As the manifold generated by 
LE is defined only at the training samples, the 
manifold is smoothly approximated to handle queries 
not in the training set. 

We adopted He’s approach for 3D model retrieval 
in [9]. We applied the dimension reduction using the 
LE algorithm on two shape features. For both of the 
features, the dimension reduced feature overtook the 
original, untrained feature in retrieval performance 
when the number of training samples is more than 
about 1,500. For the unsupervised learning of feature 
manifold, we (quasi-) randomly sampled a set of 
models from the union of 1,814 model Princeton 
Shape Benchmark database [12] and 10,911 model 
National Taiwan University database [7]. 

Later, we further explored the approach by 
experimenting with six learning-based dimension 
reduction algorithms, both linear and non-linear [10]. 
These six dimension reduction algorithms are paired 
with eight shape features in a set of experiments. Of 
the dimension reduction methods we compared, the 
locally constrained, non-linear methods such as LE and 
Locally Linear Embedding (LLE) [11] performed the 
best. The best performing pair among those tested 
performed on a par with the top finisher in the SHREC 
2006 contest, that is, Makadia’s method. 

To enter the SHREC 2007 CAD track, we used the 
same approach as described in [9, 10]. We used the set 
of “generic” 3D models as in [9, 10], not CAD specific 
3D models, for learning the manifold. Our method 
came in first in every performance index for the 
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contest even though the training samples are not CAD 
model specific. 

This paper is organized as follows. We will 
describe in Section 2, the algorithm we employed. It is 
followed in Section 3 by the experimental results we 
have done using the SHREC 2007 CAD track 
benchmark. Section 3 will present the summary and 
future work.  

2.  The retrieval method 
Our retrieval algorithm uses data-driven 

unsupervised learning to find a non-linear subspace of 
shape features for dimension reduction and then 
distance computation (See Figure 1); 

Learning phase: 

1. Feature extraction: Extract n-dimensional 
feature vectors from the K models in the training 
database (i.e., corpus).  

2. Sample selection: If necessary, to reduce 
computational costs, sub-sample the training set 
down to L ( L K≤ ) features.  

3. Manifold learning: Perform unsupervised 
learning of the m-manifold ( m n≤ ) from the n-
dimensional training samples by using a manifold 
learning algorithm. Certain learning algorithm 
produces a manifold defined only at the set of 
training samples. In such a case, to handle queries 
outside of the training set, continuously 
approximate the manifold.  

Database pre-processing phase: 

1. Dimension reduction: Project the feature of each 
3D model in the database onto the (approximated) 
m-manifold to obtain an m-dimensional “salient” 
feature. Store each salient feature together with a 
corresponding 3D model.  

Retrieval phase: 

1. Feature extraction: Extract an n-dimensional 
feature from the query model.  

2. Dimension reduction: Project the n-dimensional 
feature of the query onto the (approximated) m-
manifold to obtain m-dimensional salient feature. 

3. Distance computation: Compute distances from 
the query model to all the models in the database 
using their m-dimensional salient features using 
cosine distance. 

4. Retrieval: Retrieve the models in the database 
having the p-smallest distances from the query. 

To choose the combination of feature and dimension 
reduction method for the SHREC 2007 CAD track, we 
chose six dimension reduction algorithms including 
PCA, Kernel PCA, LE, and LLE [10]. We coupled 
these with the eight shape features including the SPRH 
and Spherical Harmonics (SH) [5]. Note that all the 
features we compared are purely geometric and 
applicable to polygon soup models as well as to 
watertight surface based models. Topological feature 
such as position and/or number of through holes is not 
used. The distance between a pair of salient features is 
computed by using Cosine distance. We chose the 
Cosine distance after comparing L1-norm, L2-norm, 
and Cosine distance for their retrieval performance. 

For the training, we would have two major 
alternatives; (1) use CAD specific 3D models, e.g., that 
of the Purdue University Engineering Shape 
Benchmark (PUESB), (2) use “generic” 3D models 
found, for example, the National Taiwan University 
3D Model Database (NTUD) [7].  

What we used for the SHREC 2007 CAD track is a 
set of “generic” 3D models, that is, the union of the 
training set of the Princeton Shape Benchmark (PSB) 
database containing 907 models and the National 
Taiwan University 3D Model Database (NTUD) ver. 
1.0 containing 10,911 models. The NTU database does 
not have any labels. The labels in the PSB training set 
are simply ignored. By using a quasi-random sequence 
(Niederreiter sequence), we sub-sampled the union 
(12,775 models) down to 4,000, 5,000, or 10,000 
models for the training. 

Some of the learning algorithms have parameters, 
e.g., number of output dimensions, neighborhoods size 
k for manifold reconstruction, and spreads of RBF 
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Figure 1. Our 3D model retrieval algorithm using 
database-adaptive distance measure. 
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kernels for manifold approximation. We chose, 
through preliminary experiments using SHREC 2006 
benchmark [14], a set of best-performing parameters.  

We integrated the multiresolution 3D shape 
comparison approach we have previously proposed [8] 
with the learning based approach described above (See 
Figure 2.) The multiresolution shape comparison 
approach uses a mathematical morphology-like 
multiresolution (MR-) representation to obtain 
multiresolution set of shape features. We applied the 
manifold learning and dimension reduction separately 
at each resolution level. That is, if the MR 
representation has L resolution levels, a total of L 
manifolds are learned using features computed for 
each resolution level. Then, dimension reduction is 
performed independently at each level. To compare a 
pair of 3D models, a distance is calculated at each of 
the L levels of the MR representation. These L distance 
values are then combined into an overall distance 
between the pair of models by using a fixed-weight 
linear combination of the distances. We used the 
weight 1.0 for all the levels. 

We conducted a set of preliminary experiments to 
compare retrieval performances of various 
combinations of the methods. To enter the SHREC 

2007 CAD track, we chose the best performing 
combination, the multiresolution (MR) SPRH feature 
dimension reduced by using the LLE algorithm and 
5,000 training models. 

3.  The experimental results 
Table 1a shows the retrieval performance figures by 

using the SHREC 2006 benchmark. For example, the 
salient (6-level) multiresolution feature LLE-MR-
SPRH-C trained using 5,000 models gained nearly 
18% in First Tire Highly-Relevant (FT-HR) compared 
to the original SPRH (=SR-SPRH-K), that is, the 
single resolution SPRH without the learning-based 
adaptation of distance measure. The SR-SPRH-K used 
Kullback-Leibler Divergence (KLD) as the distance 
measure [15]. The table also lists the performance 
figures for the top finisher in the SHREC 2006 contest, 
the Makadia’s method. 

Table 1b shows the performance indices using the 
SHREC 2007 CAD track. The best performing is the 
LLE-MR-SPRH-C (Run6), which used a dimension 
reduced, 6-level multiresolution set of SPRH features. 
It has the FT-HR of 41.23%, which is 6.5% better than 
the original SPRH (=SR-SPRH-K) in the same 
benchmark. The LLE-MR-SPRH-C (Run5) used 5-
level MR feature, omitting the level 0 (=convex hull). 
Overall performance of the 5-level version (Run 5) is 
slightly lower than that of the 6-level version (Run 6). 

The performance gain due to learning appears to be 
more significant in the SHREC 2006 than in the 
SHREC 2007 CAD track. This may be due to the fact 
that we used the manifold trained by using the SHREC 
2006-like 3D models for the SHREC 2007 CAD track.  

It is interesting to note that the feature that uses only 
the convex-hulls of the models for feature computation, 
the MR-L0-SPRH-K, performed rather well. It would 
have placed at about 4th place in the SHREC 2007 
CAD track. This might be an indication that the 
similarity decision of the SHREC 2007 CAD track 
depended heavily on the overall shape of the models. 

4.  Summary and future work 
In this paper, we described the method we used for 

our entries in the SHREC 2007 CAD track. The 
method employs unsupervised learning to estimate a 
non-linear subspace, or manifold of features. 
Dimension reduction of the original feature using the 
manifold produces a salient feature that results in 
better retrieval performance. To enter the contest, we 
used the LLE algorithm [11] for the manifold learning, 
and used a set of 5,000 “generic” 3D models for the 
training samples. By combining the learning based 
adaptive distance measure with a multiresolution shape 
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comparison approach we have previously proposed, 
we gained significant performance advantage to win 
the SHREC 2007 CAD track.  

First in the list of items to do is to see if a training set 
consisting of CAD specific models would improve 
learning and thus retrieval performance. We are also 
interested in applying the database-adaptive approach 
to the other tracks, e.g., the face model retrieval track.  
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Table 1a. Retrieval performance of our method measured using the SHREC 2006 [14]. 

Features # training 
samples 

# of MR 
levels Distance AP-HR FT-HR 

[%] DAR NCG 
@25 

NDCG 
@25 

SR-SPRH-K  - SR KLD 0.2886 26.68 0.3990 0.3920 0.4384 
MR-SPRH-K  - 6 KLD 0.3761 34.93 0.4631 0.4519 0.5101 

LLE-MR-SPRH-C  5,000 6 Cosine 0.4614 44.46 0.5341 0.5604 0.5966 
LLE-MR-SPRH-C  10,000 6 Cosine 0.4747 44.44 0.5382 0.5584 0.6013 

Makadia (Run 2) - - - 0.4364 44.77 0.5499 0.5498 0.5906 
 

Table 1b. Retrieval performance of our method measured using the SHREC 2007 CAD track. 
Features # training 

samples 
# of MR 

levels Distance AP-HR FT-HR 
[%] DAR NCG 

@25 
NDCG 
@25 

SR-SPRH-K  - SR KLD 0.3721 34.76 0.4642 0.3916 0.4478 
MR-SPRH-K  - 6 KLD 0.4055 36.38 0.5002 0.4369 0.4912 

LLE-MR-SPRH-C (Run 6) 5,000 6 Cosine 0.4337 41.23 0.5357 0.5023 0.5341 
LLE-MR-SPRH-C (Run 5) 5,000 5 Cosine 0.4319 40.25 0.5345 0.4850 0.5270 

MR-L0-SPRH-K  - 1 Cosine 0.3437 30.97 0.4400 0.3896 0.4327 
 
AP-HR: Mean Average Precision (highly relevant) AP-R: Mean Average Precision (relevant) 
FT_HR: Mean First Tier (Highly Relevant) FT_R: Mean First Tier (Relevant) 
ST_R: Second Tier (Relevant) DAR: Mean Dynamic Average Recall 
NCG @25: Mean Normalized Cumulated Gain @25 NDCG @25: Mean Normlized Discounted Cumulated Gain @25 

 “MR” denotes a multiresolution feature, while “SR” denotes a single resolution feature.  
 Suffix “-K” denotes distance computed by using Kullback-Leibler Divergence, while “-C” denotes Cosine distance.   
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Abstract 
 

The results presented in this report were obtained 
using a 3D matching framework based on a many-to-
many matching algorithm that works with skeletal 
representations of 3D volumetric objects. Skeletal 
matching has an intuitive quality that helps in defining 
the search and visualizing the results. In particular, 
the matching algorithm produces a direct 
correspondence between two skeletons and their parts, 
which can be used for image registration and 
juxtaposition. 
 
1. Approach 
 

The general approach used for this report is 
described in [1]. Below, we outline the framework and 
highlight the differences from the above mentioned 
publication. 

Our framework begins with computing a curve-
skeleton from each object in the database and the 
query set. Our curve-skeleton extraction algorithm 
works on a volumetric representation of the 3D object. 
It is based on the method presented by Chuang et. al. 
[2], which uses a generalized potential field, generated 
by charges placed on the surface of the object.  As the 
original implementation (described in [5] and used in 
[1]) was computationally too expensive to be 
efficiently used for large datasets, in [3] we developed 
a faster methodology, based on propagating surface 
normals toward the interior of the object. In summary, 
surface normals computed for the original object are 
subject to a number of smoothing steps (a default value 
of 10 was used here) and then, using a front 
propagation scheme, they are propagated to all the 
interior voxels by averaging, generating a vector field. 
The new methodology has the advantage of partially 
maintaining the averaging effect of the generalized 
potential field, while having a lower computational 
cost (linear). 

 
Given a 3D vector field, we use concepts from 

vector field visualization to extract a “core” skeleton, 
connecting the critical points of the underlying vector 

field. The critical points are detected on a cell by cell 
basis, by looking for voxel cells where each of the 
three vector components changes sign, over the eight 
nodes of the voxel cell. Candidate cells are recursively 
subdivided and the above candidacy test is repeated 
until either the cell fails the test, or the cell is small 
enough, in which case a critical point is assumed to 
exist at the center of the cell.  

 
Skeleton segments are discovered using a force 

following algorithm on the underlying vector field, 
starting at each of the critical points. The force 
following process evaluates the vector (force) value at 
the current point and moves in the direction of the 
vector with a small pre-defined step. Since at critical 
points the force vector is zero, the initial step is taken 
in the direction of the outgoing flow, given by the 
eigenvectors corresponding to the positive eigenvalues 
of the Jacobian at the critical point. The skeleton 
obtained by connecting the critical points, is called the 
“core skeleton”.  

 
The skeleton obtained using the above algorithm 

consists of a set of points sampled by the force 
following algorithm. Each skeleton point is then 
equipped with a distance transform value: a real 
number specifying the distance to the closest point on 
the surface of the object. This additional information is 
used by the many-to-many matching process. 

 
Different from the approach taken in [1] and [5], we 

construct the rest of the curve-skeleton guided by how 
much of the original object is reconstructed by the 
current skeleton. The idea behind this approach can be 
expressed as follows: a curve-skeleton represents a 
particular object better if it can reconstruct more of the 
original object. We start with the core skeleton and 
reconstruct the object from this representation using 
the distance transform information, associated with 
each skeleton point. We compute the difference 
between the original object and the object 
reconstructed from the current curve-skeleton. If the 
difference is more than a given percentage of the 
original object, we choose a point from the un-
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reconstructed part of the object and derive a new 
curve-skeleton branch using the selected point as a 
seed point for the force-following algorithm described 
above. The process is then repeated started from the 
new curve-skeleton until the target reconstruction 
percentage is reached. The representative point from 
the un-reconstructed part is selected using the 
divergence criterion presented in [5].  

 
In the experiments presented in this report, we used 

two target reconstruction percentages for the two runs: 
30% and 80% of the original object. We name the two 
runs MMM-RCS-30 (for 30%) and MMM-RCS-80 
(for 80%), corresponding to Many-to-Many Matching 
of Reconstruction-based Curve-Skeletons. Note that 
some objects, especially those containing surface-like 
regions, cannot be well reconstructed using a curve-
skeleton. Therefore, the skeleton construction 
algorithm stops when there is no significant 
reconstruction progress from one step to the next. 
 

For more details on the force-following algorithm 
and other details about curve-skeleton computation, 
please see [3] and [5]. 

 
Given a pair of 3D skeletons, our next objective is to 

find the correspondences between their vertices and 
produce a similarity score. We use a distribution-based 
similarity measure, known as the Earth Mover's 
Distance (EMD) [4] to achieve this goal. The Earth 
Mover's Distance framework is designed to evaluate 
dissimilarity between two multi-dimensional 
distributions. Each distribution consists of a set of 
points along with their attributes. Coordinates in multi-
dimensional space, weights, and scales are only a few 
examples of point attributes.   

 
The EMD approach assumes that a distance measure 

between single features, called the ground distance, is 
given. The EMD then “lifts” this distance from 
individual features to full distributions. Intuitively, 
given a pair of distributions, one may see the first 
distribution as a set of piles and the other as a set of 
holes in the same space. Let us define a unit work as 
transporting one unit of earth by a unit of ground 
distance. The EMD then computes the minimum 
amount of work that is necessary to fill the holes with 
earth. This problem is formalized as linear 
programming problem.  

 
The EMD approach extends the concept of distance 

between two points to that of a distance between two 
sets. The distance between two sets can be used as 
their dissimilarity score. It was shown in [4] that when 

the ground distance is perceptually meaningful, the 
EMD obtains perceptual similarity better than other 
measures. In addition, one main advantage of using 
EMD lies in the fact that it subsumes many histogram 
distances and permits matches in a natural way. If the 
size of each set in the problem is not equal, the EMD 
approach results in a partial matching. This important 
property allows the similarity measure to deal with 
uneven clusters and noisy datasets. This is especially 
significant for some applications such as image 
retrieval and registration. We used this property to 
compute a partial matching between two skeletons. 

 Computing the EMD is based on a solution to the 
well-known transportation problem, whose optimal 
value determines the minimum amount of “work” 
required to transform one distribution into the other. 
While computing this optimal value, the approach also 
finds the correspondences between input skeletons. 
The reader is referred to [1] for details.  
 
2. Results 
 

The overall results (Figure 3) show that, in general, 
our methodology has discriminative power in 
retrieving relevant classes of objects, being 
consistently better than random choices. The graphs 
also seem to indicate that a target reconstruction of 
80% performs worse on the retrieval task than a 30% 
target, on the given query set. This can also be seen 
from the individual graphs (Figures 4, 5 and 6), where 
MMM-RCS-30 performs better than MMM-RCS-80 in 
most cases.  

 
The MMM-RCS method performs very well for 

objects which can be represented well by generalized 
cylinders (see queries 3, 20, 22, 24). For these objects, 
the curve-skeleton reconstructs most of the object, 
while at the same time remaining very simple and thus 
easier to match to other similar curve-skeletons. The 
method performs particularly badly (worse than or, 
similar to, random selection) on shapes with surface-
like sections (see queries 2, 9, 10, 17, 21, 26). These 
sections cannot be well reconstructed by a simple 
curve-skeleton. As a result, our reconstruction-based 
skeleton building process generates very complicated 
skeletons, with many branches, and clearly no 
discriminative power. 

 
It is interesting to note that this experiment does not 

disprove the initial hypothesis that reconstruction is a 
good measure of quality for shape descriptors used for 
matching. Although the results show that the 30% 
target reconstruction skeleton performs better than the 
80% skeleton, this can be explained by the increased 
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complexity of the 80% skeleton for objects that cannot 
be represented well by curve-skeletons. For mostly 
tubular objects, 80% is actually better than 30%. The 
solution for a better matching result seems to be a 
shape descriptor which combines curve and surface 
descriptors, so that both of these types of sections are 
easy to reconstruct from a simple descriptor. 
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Abstract

This extended abstract describes a method for partial
shape-matching able to recognize similar sub-parts of ob-
jects represented as 3D polygonal meshes. The geometry
and the structure of the shapes are coupled in a descrip-
tor that provides a flexible coding, grounded on solid math-
ematical theories, and that can be adapted to the user’s
needs and to the context of applications.

The matching framework for sub-part correspondence is
achieved through a graph-matching technique, which builds
the common sub-graphs between the two shapes and high-
lights the maximal sub-parts having similar structure and
similar space distribution.

1. Approach

Aim of this extended abstract is to describe a method for
recognizing the sub-parts of two objects the most similar
both in geometry and structure. The main innovation of the
method is the coupling of a structural descriptor [1] with a
geometric descriptor and the inexact graph-matching tech-
niques [5, 7, 2].

The structural information of the object is captured by
the Extended Reeb Graph (ERG) computed with respect to a
position invariant function [1, 2]. The function used for the
experiments performed on this track is the integral geodesic
distance proposed in [3]. The shape characterization and the
Reeb graph construction naturally induce a decomposition
of the shape into topologically significant regions used to
produce a directed graph in which each node corresponds to
an object sub-part and each edge connects two nodes. Node
attributes represent the geometric descriptors associated to
corresponding sub-part [2]. The mathematical properties of
the extended Reeb graph assure that the structural descrip-
tor can be represented as a directed and acyclic graph even
if the shape model, the graph is extracted from, has genus
grater than zero.

Figure 1 shows an example of a 3D model 1(a) and the

corresponding structural descriptor 1(b). Since the graph is
directed and acyclic, each node of the graph can be con-
sidered as a root of its induced subgraph. This subgraph
identifies the sub-part of the model that can be described
by a geometrical descriptor (see Figure 1(b)). Within this
track, the shape descriptor used to produce the geometrical
attributes associated to each node of the graph is the rotation
invariant spherical harmonic representation proposed in [4].

The sub-part shape correspondence between two objects
is obtained by matching the directed attributed graphs. The
output of the matching process should be the largest maxi-
mal common subgraph that minimizes the geometrical and
the structural differences between the two models. The pro-
posed matching algorithm can be synthetically described by
the two following steps:

1. Select a mapping M among the nodes of the two
graphs G1 and G2. The mapping M is a set of node
pairs (v1, v2), where v1 is a node of G1 and v2 is a
node of G2;

2. compute the common subgraph between G1 and G2 by
expanding the mapping M .

Figure 2 provides a graphical explanation of the algorithm
described by the steps 1 and 2. The initial mapping de-
scribed by step 1 is shown in figure 2(a). This step allows
the use of several heuristics techniques to identify the ini-
tial mapping depending on the application context the al-
gorithm is used for. Step 2, shown in figure 2(b), expands
the initial mapping M as much as possible while respecting
the definition of common subgraph. Also in this case, as
for the previous step, the expansion process can be driven
by heuristic techniques depending on the semantics of the
models and the application context. For the track on partial
matching have been used general-purpose techniques based
on the relevance of the graph nodes and the combination of
geometry and structure as described in [2]. In particular, it
has to be observed that the initial mapping among relevant
nodes makes the algorithm robust with respect to structural
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(a)

(b)

Figure 1. A 3D model (a) and its correspond-
ing structural descriptor (b). The direction
of the edges and the sub-parts of the model
identified by each node are shown in (b).

noise, allowing the construction of a not necessarily con-
nected common subgraph, as shown in figure 2(c), that en-
ables the recognition of similar sub-parts even if the overall
objects shape/structure is dissimilar.

2 Results and Discussion

The results produced within this track of the SHREC07
contest, see [6], have been obtained by applying the match-
ing algorithm previously described to the ERG structural
descriptor obtained by analyzing the models with two dif-
ferent resolutions. In particular the function based on the
integral geodesic distance has been sampled into 15 and 63
level sets, corresponding to the runs ERG 1 and ERG 2 re-
spectively.

As shown in Figure 3 of the report on the partial match-
ing track [6], the performance improvement of the two runs

(a)

(b)

(c)

Figure 2. Synthetic description of the match-
ing algorithm: the initial mapping (a), the ex-
pansion process (b) and the common sub-
graph (c).

ERG1 and ERG2 are marginal by considering highly rele-
vant and marginally relevant models instead of only highly
relevant models. This means that for both ERG1 and ERG2
the performance are mainly driven by the highly relevant
models.

Even though the overall performance of both the runs
ERG1 and ERG2 are quite good, different behavior can be
observed in the Figures 4, 5, 6 shown in [6]. For example
query 3 is not characterized by relevant structural features.
In this case both ERG1 and ERG2 do not provide good per-
formance. Moreover, it should be noticed that while for
the queries 5, 9, 17, 19 and 23 both ERG1 and ERG2 have
similar performance, while for the queries 4 and 10 their
performance are quite different. This means that due to the
different resolutions corresponding to the two runs, the rel-
evant features of the query models are not correctly recog-
nized by the matching process. A similar remark must be
made for the queries 2 and 10, where the involved sub-parts
are the same but their relative size is different.

Finally, it has to observed that for the results correspond-
ing to the queries 15 and 22 the performance of both ERG1
and ERG2 are quite bad. Also in this case the problem may
be caused by a bad recognition of the relevant features.
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Abstract 
 

We attend the SHREC 2007-Protein model, we 
focused on the topology of each protein: they use 
STRID to detect the secondary structure, including the 
hydrogen bond. Then, they compute the beta sheets 
(beta strands connected with hydrogen bond) and the 
orders. For main class a, b, c, d, g, and folds of a and 
g, we used the length and percentage of alpha helix 
and beta strand to classify. For each fold in each class 
b, c, d, they used the keys of the orders to classify. Our 
method performed best in the contest. 
 
 
1. Introduction 
 

We attended the SHREC 2007-Protein Challenge 
competition, SHREC 2007 was organized by the 
AIM@SHAPE network to evaluate the effectiveness 
of 3D features on protein 3D models. The website 
address for the competition is available at 
http://lmb.informatik.uni-
freiburg.de/events/shrec07/index.en.html. Our method 
performed best using some simple features based on 
proteins’ secondary structures and their topologies. 

 
The SCOP database is the well-known ground truth 

for protein classification recognized by biological 
community. In SCOP database, protein classes are 
defined by protein’s secondary structures and protein 
folds are mainly defined by the topologies of 
secondary structures.  

 
For the 653 provided dataset, protein classes and 

folds were first manually checked against their classes’ 
and folds’ definitions in SCOP database; The class 
clustering are mostly related to the size of alpha helix, 
beta sheets or the number of residues, but most of folds 
are not accurate exactly match. For example: in class a, 
most of proteins have alpha helixes only, but in 1opc 
for example, beta sheets also exist. However in protein 

folds, most of the beta strands are not exactly but 
closely ordered as defined. 
 
1.1. Class classification 
 

For class a, b, c, d, and g classification, we used the 
size of alpha helix, beta sheets, and counted the 
number of residues to classify.  
 
1.2. Fold classification 

 
For fold classification in class a, we mainly used 

alpha helix information, and all class g were classified 
as fold g.3 since most of the folds in class g belong to 
g.3. 

 
For fold classification in class b, c, and d, first, we 

used STRIDE to compute the alpha helixes, beta 
sheets, and hydrogen bonds, then we computed the 
order of each core strands; Here, to avoid the cases of 
reversed order such as 4123 and 3214, the order of 1 
would always close to the first half of the string; when 
1 is in the middle position, the smaller number would 
be first such as we would use 213 instead of 312. 

 
Since most of the datasets are not exactly ordered as 

defined in the SCOP database, the problem became, 
technically, finding the approximate definition of each 
classes and folds, which should not be too specific for 
similar structure, and also it should not be too general 
in order to distinguish each classes and folds. 

 
One approach could be, for a given protein, with its 

orders of 4132 and 213 for example, the order with the 
largest number of beta sheets 4132 and the number of 
beta strand 2 are used as the key for grouping, and is 
recorded like 2_4123. With this approach, we found 
that same keys will most likely fall into same fold, and 
same fold usually have multiple keys. For example: 
order 2_4123 were only observed in fold b.1, and 
2_213 also mostly happened in class b.1, where the 
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formal definition of fold b.1 is “sandwich; 7 strands in 
2 sheets; greek-key”. 

 
For a given query, the process of fold classification 

in class a and g was only based on residue length on 
alpha helix, beta sheets, or others. For folds in class b, 
c, and d, the process is: first group all the keys of 
orders with their folds in dataset, ordered by their 
occurrences in dataset, then look for the exact string 
matching of giving query’s ordering key. The fold with 
the maximum number of key occurrence was the hit. If 
not record was found, a default value would be used.  
 
1.3. Scoring 
 

As requested in contest, we need to provide a 
distance matrix for the given query. The distance 
between two proteins was defined as major class 
distance + medium fold distance + minor size distance, 
the fold distance would be 0 if two proteins’ class were 
same. For class distance, class b should be more close 
to class c than class a, because class a do not have beta 
sheets, so we simply map each class into a 2D space, 
which would satisfy the distance constrain. For 
example: class a is mapped to (-1, 1), class b is mapped 
to (1,-1) and class c is mapped to (0,-1); and the class 
distance is computed by the Euclidean distance. 
Similar to class distance, fold distances were also 
mapped by the guidance of missing classification of 
our method. For example, fold a.24 and a.26 were miss 
classified mostly then we mapped a.24 closely to a.26. 
Size distance was defined as 1-(shorter number of 
residue)/(longer number of residue), then the distance 
value would be between 0 and 1. And then, different 
weights 0.6, 0.4 and 0.1 were applied to class, fold and 
residue distance. 
 
2. Database 
 

Totally 633 proteins are provided, which falls into 
27 folds in SCOP database. Details of the dataset are 
available from http://lmb.informatik.uni-
freiburg.de/events/shrec07/task.html. 

 
3. Method 
 

The first step was to clean the protein by removing 
duplicated residues and multiple frames, and then 
STRIDE was used to detect the secondary structure, 
including the hydrogen bond. Next step was to 
compute the orders of beta sheets, the beta strands 
connected by hydrogen bond, and then we computed 

the keys, such as 2_3124, which means two beta sheets 
and the largest one is ordered as 3124. 

 
Then classes were classified as following: 

Computed the total number of residues in alpha 
helixes, NA, and total number of residues in beta 
sheets, NB, let PA=NA/(NA+NB).  

If NA+NB are less than 18, then it is class g.  
If PA is larger than 0.94, then it is class a.  
If PA is less than 0.35, then it is class b.  
If the total number of atoms is less than 104, then it 

is class d, else it is class c. 
 
To classify the folds in class a:  
If number of alpha strand >= 6 
 If the average length of alpha strand >= 12.5 

then it is fold a.1. 
 If the average length of alpha strand < 12.5 

then it is fold a.39. 
Else 
 Compute each ith alpha helix’s vector by 

subtracting the coordinates of the first CA and the last 
CA, then average the angles between ith alpha helix 
and (i+1)th alpha helix, named as BUNDLE. 

 Compute the average residue length between 
adjacent alpha helixes, named as AVGLEN. 

  If (BUNDLE >0.57) then 
   If AVGLEN < 9.5 then a.24 
   If AVGLEN>=9.5 then a.26 
  Else  
   If AVGLEN > 8 then a.3 
   If AVGLEN <= 8 then a.4 
  End if 
 End if 
 
To classify the folds in class b, c, d: 
Compute the key of the order K. 
If K is found in the dataset 
It is the corresponding fold with the maximum 

number of occurrence. 
Else 
 It is b.29 for class b. 
 It is c.93 for class c. 
End if. 
 

3. Scoring 
 

To compute the distance between two proteins: 
Map each class of a, b, c, d, and g to (-1, 1), (1, -1), 

(0,-1), (0, 1), and (0, 0); 
 
Map each fold of 1, 26, 24, 29, 45, 39, 3, 4, 85, and 

86 in class a to: 
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 (0, 0), (1, 0), (2, 0), (2, 0.5), (2.5, -0.5), (0, 1), (2, 
2), (2.5, 2.5), (0, 1.5), and (-0.5, 1). 

 
Map each fold of 1, 6, 121, and 40 in class b to: 
(0, 0), (0, 1), (1, -1), and (-1,-1).  
 
Map each fold of 2, 23, 55, 47, 3, 69, 1, and 93 in 

class c to: 
(0, 1), (-1, 1), (1, 1), (0, 1.5), (1, 1.5), (0, -1), (-1, -

1), and (1, -1) 
  
Scoring: 
The final distances were computed as: (class 

distance)*0.6 + (fold distance) *0.4 + (size distance) 
*0.1 (The fold distance is set to 0 if two proteins 
belong to same class) 
 
5. Results 
 

The method can correctly identify 77% of 632 
proteins in fold level. Where the details of the results 
are available from http://lmb.informatik.uni-
freiburg.de/events/shrec07/results.html  
 
5. Conclusion 
 

After we computed the secondary structures using 
STRIDE, some beta sheets or alpha helixes were 
shown in PYMOL but not identified in STRIDE. Since 
the secondary structure would affect our results 
significantly, a more robust method is needed. 

 
Unlike other models in SHREC, the problems in 

protein model were not just to find the optimal 
methods, it is also needed to identify the correct 
questions, since this is still not very straightforward in 
SCOP database even it’s the golden standard. It 
seemed that most proteins do not follow a strict rule to 
be classified into a certain category, which looked like 
to be protein’s nature character, so there would be lots 
of "errors" and the errors were hard to be avoided. 

 
Our method is simple, so it might tolerant more 

"errors". Also, using keys of orders are likely 
memorizing the answers. So, more studies on 
clustering were needed. 
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1. Introduction 
 
Computational approaches for protein classification 
have been proposed over the last years in order to 
speed up the analysis of the biological mechanics in 
living organisms.  Most of the approaches tend to focus 
in geometrical comparison of the 3D molecules to 
reach their goals. This method is suitable for partial 
(sub) graph matching of 3D proteinic models, in order 
to achieve fast and accurate classification, is proposed. 
The method is analytically described in [1]. 
 

2. Descriptor Extraction Method 
 
Firstly, the pdb files are parsed so as to create the 3D 
protein representations. Then, each proteinic chain is 
being segmented based on the type of secondary 
structures of the molecule. Further, the Spherical 
Harmonic expansion is applied to every protein 
segment, in order to extract geometrical descriptors 
invariant to geometric transformations. The 
segmentation process leads in the construction of a 
graph which is further enriched with the extracted 
geometrical descriptors and topological information 
such as the angles between two neighboring edges. 
Thus, every protein is fully described by an attributed 
graph, where the attributes are the topological and 
geometrical features. 
 

3. Matching 
 
For the matching purposes, an attributed graph 
matching process has been utilized. Parts with 
topological and geometrical similarities are identified 
and finally a single dissimilarity metric is computed. 
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Abstract

In this work, we describe a 3D face recognition approach
that we tested in the SHREC - 3D Shape Retrieval Contest
of 3D Face Models organized by the Network of Excellence
AIM@SHAPE.

1. Introduction

Human face identification has been addressed mainly fo-
cussing on detection and recognition of faces in 2D still im-
ages and videos [6]. Recently, three-dimensional (3D) fa-
cial data has been proposed to improve the effectiveness of
face recognition systems [2]. This is motivated by the fact
that solutions based on 3D face models are less sensible,
if not invariant, to lighting conditions and pose variations.
This opens the way to systems supporting face recognition
by combining information extracted from 2D images with
the information of facial characteristics derived from 3D
models. Motivated by these considerations, an increasing
number of face recognition approaches using 3D data has
been proposed.

2. Face representation

In our approach, in order to capture structural informa-
tion of 3D faces, the complete face surface is used and a
smooth real valued function is defined on the 3D surface
in order to capture its local characteristics. In particular,
we computed the normalized geodesic distance between the
surface vertices and a reference (fiducial point) identified
at the nose tip. Then, distances are quantized, and surface
points which belong to the same interval of distance from
the nose tip are grouped together to form different bands on
the face. Every band is then modeled by considering its spa-
tial relationships with respect to any other band of the face.
In so doing, a modeling technique is used to represent spa-
tial relationships between 3D extended sets of points. This

representation is based on integral measures which evalu-
ate the relative arrangement of individual pairs of points by
considering their mutual position in a 3D absolute reference
system. Since this latter representation is not rotation invari-
ant, models require a common alignment in the 3D absolute
Cartesian reference system. To this end, the plane formed
by the nose tip and by the two fiducial points located at the
base of the eyes is used. As a consequence, the approach re-
lies on a pre-processing step in which fiducial points of the
face are identified, and a common alignment of the models
is obtained.

2.1. Fiducial points identification

Fiducial points identification requires the computation of
Gaussian and Mean curvatures of models surfaces. Since
the mesh surface is discrete and the computation of Gaus-
sian and Mean curvature requires C2 functions, we inter-
polated the surface using the bi-quadratic function of a
paraboloid (with unknown coefficients a, b, c, d and f ):

ζ = aξ2 + bξψ + cψ2 + dξ + eψ + f (∈ C2)

Once the 6 coefficients are determined, values of Gaussian
(K), and Mean (H) curvatures can be directly obtained:

K =
(4ac− b2)

(1 + d2 + e2)2
, H =

(a+ c+ ae2 + cd2 − bde)
(1 + d2 + e2)3/2

In particular, the discrete surface is locally approxi-
mated, vertex by vertex, using the following steps:

- A local reference system centered on the vertex is de-
fined, with the z-axis oriented along the normal n to
the surface at the vertex. Coordinates of the neigh-
borhood vertices are transformed into the vertex lo-
cal reference system according to the rotation R =
(r1, r2, r3)T , where r1 = (I− nnT )i/||(I− nnT )i||,
r2 = r3 × r1 and r3 = n;
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- Neighborhood vertices q(x, y, z) to the current ver-
tex p(x, y, z)), are transformed according to R:
q(ξ, ψ, ζ) = R · (q(x, y, z) − p(x, y, z)) and a re-
dundant system of equations is solved:

ξ2l,1 ξl,1ψl,1 ψ2
l,1 ξl,1 ψl,1 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

ξ2l,n ξl,nψl,n ψ2
l,n ξl,n ψl,n 1


·


a
b
c
d
e
f

 =



ζl,1
...
...
...
...
ζl,n


For almost all the vertices, a system of six equations has

been sufficient. Once curvature values are computed for
every vertex of the surface, a median filtering is used to re-
move impulsive noise.

Our face representation relies on the identification of
three fiducial points on the model surface. These are the
pronasale (i.e., the nose tip) and the left and right endo-
canthion (i.e., the points at the inner commissure of the left
and right eye fissure, respectively), which have been veri-
fied to be stable with respect to face variations [3]. These
can be identified using the curvature information observ-
ing that points near to the nose tip identify a convex region
(characterized by negative values of the Mean curvature and
positive values of the Gaussian curvature), while points at
the two endocanthion originate two concave regions (char-
acterized by positive values of the Mean and Gaussian cur-
vatures).

In particular, if H(v) and K(v) are the Mean and Gaus-
sian curvatures for a vertex v, the vertex is classified accord-
ing to the following rules:

convex vertex if : H(v) < −tH and K(v) > tK

concave vertex if : H(v) > tH and K(v) > tK

with thresholds tH = 0.04 and tK = 0.005. These values
for the thresholds were previously determined on databases
of 3D faces of real subjects scanned at one-to-one scale
(about 70mm as average distance between mesh vertices
and the centroid of the mesh) and resolution of about 15000
vertices. On the left of Fig.1, a face model is shown with
the convex and concave regions identified according to the
Gaussian and Mean curvature.

However, this curvature estimation is not effective on
meshes of high resolution like those used in SHREC which
have a complexity of 75972 vertices. In this case, interpo-
lating polynomials of higher degree are needed or different
approximating surfaces (like those defined by Bèzier [5]).
Due to the limited time to provide results for the SHREC
competition, we faced this difficulty by reducing the mesh

resolution to the 15% of the original one using the Heck-
bert/Garland sampling approach. This simplification tries to
reduce the number of vertices in planar regions of the mesh,
while preserving the surface complexity of curved regions.

Figure 1. Face processing to identify fiducial
points and to provide a common alignment of
the models.

Once convex and concave regions have been identified,
a representative point for every region must be determined
in order to be used as candidate fiducial point. To this end,
the vertex with the normal more close to the mean normal
of the region (averaged on all the vertices of the region) is
considered. The squared black markers inside regions of
Fig.1 are used to highlight these points.

To determine the convex and concave regions corre-
sponding to the fiducial points, the most plausible triangle
representing the arrangement of the nose tip and of the two
endocanthion is determined. For this purpose, constraints
on the shape, position and size of the nose and the eyes are
used to prune the number of possible valid triangles. For the
remaining triangles, a fitting operation is performed which
measures the error between the surface points and those of a
“template nose” adjusted on the three vertex of the triangle
(see Fig.2). Vertices of the triangle providing the smaller
error are finally selected as fiducial points of the model.

Figure 2. The “template nose” superimposed
to a face model is shown: frontal view on the
left; behind view on the right.

The complete preprocessing for a sample face is shown
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in Fig.1. The face reported in the center of Fig.1 evidences
the “template nose” and the corresponding fiducial points.
On the right, the model rotated in its final aligned position
is shown.

2.2. Face partitioning

Instead of performing a-priori rigid partitioning of the
face surface, the complete face surface information is used
to define a smooth real valued function on the surface of
the 3D model in order to capture its local characteristics. In
particular, the normalized geodesic distance between sur-
face points and the nose tip, taken as the reference point are
computed. The face surface S is approximated through a
discrete triangular mesh M with n vertices v1, . . . , vn, and
vf is the fiducial vertex located at the nose tip. Geodesic
distances are calculated on the piecewise planar mesh ac-
cording to the Dijkstra’s algorithm. This approximates the
actual geodesic distance between vertices vi and vf with
the length of the shortest piecewise linear path on mesh ver-
tices µ(vi, vf ) = minP L(P (vi, vf )), where: P (vi, vf ) is
the path from vi to vf defined as an ordered sequence of ad-
jacent vertices (vp(1), . . . , vp(k)); L(P (vi, vf )) is the length
of the path measured as the sum of the Euclidean distances
between adjacent vertex pairs. More sophisticated approxi-
mations (like for example the fast marching algorithm [4])
can be used which are not constrained to the edge length,
but use the entire surface of the mesh. In the presence of
non-triangular meshes, or non-regular meshes, approxima-
tion of the actual geodesic distance may be inaccurate. To
avoid this, meshes undergo a pre-processing step account-
ing for triangularization and regularization.

Normalized values µ̄(vi, vf ) of the geodesic distance are
obtained dividing µ(vi, vf ) by the Euclidean eyes-to-nose
distance. This normalization guarantees invariance of func-
tion values with respect to scaling of the face model. Fur-
thermore, it does not bias the values of the function under
expression changes. Once values of µ̄(vi, vf ) are computed
for every surface vertex, the face surface can be partitioned
into iso-geodesic bands. For this purpose, the range of µ̄
values is quantized into N intervals c1, . . . , cN . Accord-
ingly, N bands are identified on the model surface, the i-th
band corresponding to the set of surface vertices for which
the value of the distance falls within the limits of interval
ci. In so doing, the effectiveness of the representation de-
pends on two main factors: the maximum allowed value of
geodesic distances from the nose tip (this defines the face
coverage, that is the portion of the face surface used for
recognition), and the number of levels quantizing this in-
terval (this determines the number of bands as well as their
width).

For the purpose of 3D face recognition, the face cover-
age includes the main face traits, like eyes, nose, mouth,

cheeks, eyebrows and the main part of the forehead, and
doesn’t include parts which can be affected by noise, like
the borders of the model, or the hair. This is particularly
the case of models acquired by real scanners where the sole
frontal capture of the face is available (and not the whole
model of the head like in SHREC). Centering this region on
the nose tip, its radial geodesic range spans 8÷9cm. The
optimal width of facial bands, instead, is mainly related to
the modeling technique used for their description. A com-
promise has been found using bands which span 1cm in the
geodesic radial distance. This results in 8÷9 bands covering
the part of the face relevant for recognition, with approxi-
mately a maximum of 15÷20% of the points comprised by a
band, changing their positions due to expression variations.

Different runs of our approach submitted to SHREC,
have been obtained using different face coverages and dif-
ferent widths of facial bands. In general, we observed that
better results have been obtained using 9 bands of normal-
ized width of 0.08 (run 1).

2.3. Modeling spatial relationships between
facial regions

Information about the arrangement of facial bands is rep-
resented through integral measures capturing the mutual
spatial relationships (in all the possible elementary direc-
tions of the space, left, right, up, down, in front, behind,
etc.) between any pair of points of the same band (intra-
band spatial relationship), and between any pair of points
of different bands (inter-band spatial relationships). For any
pair of bands, Si and Sj , variations in the relative spatial ar-
rangement of pairs of points in Si, Sj , impact on the overall
value of the measure according to the proportion between
the number of varying points with respect to the overall
number of points in Si and Sj . More details on this model-
ing approach can be found in [1].

This permits, at the same time, to perform efficient com-
putation of the structural information of a face model and
smooth the effect of local variations induced by expression
changes. Iso-geodesic bands and their spatial relationship
measures are cast into a graph-like representation, where
graph nodes represent facial bands and graph edges their
relative 3D spatial arrangement. Graph matching is used to
perform effective and efficient comparison of face models.

3. Results

For our approach, results show a lower average Normal-
ized Cumulative Gain and a lower average Normalized Dis-
counted Cumulative Gain, with respect to the others two
approaches that submitted the final runs to SHREC. Results
are not completely satisfactory, but are encouraging. This
is motivated by the fact that the overall performances of the
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approach have been negatively affected by some factors that
we have not encountered in our previous experimentations.

First, the methods has been affected by the fact that all
the models of SHREC are artificially rotated up to 30 de-
grees in every direction. In fact, our approach requires a
common alignment of the models with respect to a global
reference system, and can cope with small rotations. In
real contexts of use, usually only small differences in the
alignment of face models, due to different acquisitions, are
present. In the context of SHREC, our solution for face
alignment resulted not completely adequate to align many
of the models. This is evidenced by the fact that also for our
best submitted result series (run 1), in the 45% of the cases
(29 queries out of the 64), the query model itself has not
been retrieved in the first position. This evidences a diffi-
culty for these queries in determining a common alignment
between models. If the results of the Normalized Cumu-
lative Gain and of the Normalized Discounted Cumulative
Gain, are examined by considering this fact, it can be ob-
served that the curves of our approach have the same in-
creasing slope of the others two competitors (at increasing
gain), thus evidencing a similar retrieval trend. The differ-
ence is mainly due to the difference in the starting point
which depends from the missed retrieval of the database
model equal to the query.

In addition, as reported in Sect.2.1, the high resolution of
the models required us to reduce the number of vertices by
sub-sampling the model surface. This has been necessary to
have good performances for the process which extract fidu-
cial points of the face. Of course, working at a considerably
lower resolution has determined the loss of face details, thus
contributing to further reduce the performance with respect
to the others competitors.

Moreover, our approach was devised to perform 3D face
recognition on real face models acquired by common ac-
quisition devices (like 3D laser or structured light scanners)
even in presence of different facial expression. Since these
devices are typically used to capture only the frontal part of
the face, our method does not consider the whole head in
comparing different models. This reduces the overall infor-
mation used in the match, that can instead be used by differ-
ent solutions specifically targeted to use the whole model of
the head. Actually our model can also use the whole head
information, but we did not experimented this before, and
so we decided to only use the face of the head models in
order to compare SHREC models.

The combination of these factors has impacted the aver-
age performance measures of our approach. However, its
capability to capture salient structural information of the
face and to provide good similarity retrieval is evidenced
by those queries for which the above difficulties have had a
lower influence. As an example, Fig.3 and Fig.4 report the
Precision vs. Recall and the Normalized Discounted Cumu-

lative Gain, respectively, for the query model Q1001.

Figure 3. Precision vs. Recall curves for the
query model Q1001.

It can be observed that, in the cases for which face align-
ment has been successfully solved, the approach provides
results which are comparable with that of the others two
competitors.

Figure 4. Normalized Discounted Cumulative
Gain for the query model Q1001.

Finally, it is relevant to note that the proposed ap-
proach is capable to match a query model against the over-
all SHREC database comprising 1516 models in approxi-
mately 1sec (using non optimized Java code on a Pentium
machine with 1Gb memory). This makes the proposed solu-
tion scalable to very large face databases, and applicable in
real contexts of use, where recognition must be performed
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in real time. However, this performance measure was not
considered among the evaluation criteria comparing differ-
ent solutions in SHREC.

4. Discussion

In this work, we experimented our 3D face recognition
approach in the context of 3D face similarity retrieval. The
approach has proved to be highly effective and efficient in
3D face recognition. Results for 3D similarity retrieval on
the SHREC database indicated that for this kind of appli-
cations improvement to the pre-processing steps of the ap-
proach are needed. In particular, a main factor that lim-
ited the average performance of the approach in 3D simi-
larity retrieval, resulted the difficulty to obtain a common
alignment of the models with respect to a global 3D refer-
ence system. Since the approach assumes a global refer-
ence system for all the models, wrong alignments resulted
in an initial error that biases the representation and reduces
the accuracy of retrieval in many cases. The difficulty in
model alignment has been further complicated by the need
to down-sample the vertices of the models in order to per-
form the detection of the fiducial points needed for models
alignment, and for the computation of geodesic distances
on the model surface. Based on these observations, future
work will be mainly devoted to improve the pre-processing
of the models in order to accurately identify fiducial points,
and to correctly align models in the reference system. In
particular, the problem emerged in locating fiducial points
in models of high resolution will be addressed by using in-
terpolating polynomials of higher degree or the surfaces de-
fined by Bèzier. As a further step, we aim to reformulate the
representation in a local reference system.

A final observation regards the way models of heads in
the SHREC database are obtained. A first consideration is
that the common practice in real applications for face recog-
nition/authentication is to have scans only of the frontal
facial surface that can be acquired with devices like laser
or structured light scanners. Differently, in SHREC whole
head models are provided. This, and the fact that a mor-
phing operation is used to derive head models from de-
formable templates, make the test set somewhat biased to-
wards methods that use morphing to evaluate models simi-
larity. In general, these methods are capable to use the entire
head information, have a small sensitivity to models rota-
tions and have a good accuracy, but at the cost of a very high
computational complexity. Other solutions, which are more
targeted for recognition or authentication in real applicative
contexts, and so use only the facial surface for similarity
evaluation, can be impaired by the SHREC models.

In addition, since the evaluation is targeted to similarity
retrieval, the retrieval time is a factor of performance highly
relevant. Of course, registration or morphing methods can

provide very good similarity measures but at the cost of pro-
hibitive computational time to be applied in large databases
for real time recognition applications. As so, these methods
are more adequate for an authentication scenario, where a
person claims its identity and comparison between only two
models suffices.

Finally, in real 3D face databases only small differences
in the alignment of models are present. In the SHREC
database, instead, high differences in the models alignment
are artificially created. Of course, this is useful for the in-
vestigation of the behavior of different approaches with re-
spect to this feature, but mixing alignment variations with
face differences makes it difficult to evaluate the real poten-
tiality of the approaches with respect to the sensitivity to the
face features alone. Since not all methods are invariant with
respect to alignment, maybe the evaluation of robustness
with respect to rotation of same faces and with respect to
face variations should be evaluated separately. Differently,
similarity results are difficult to be interpreted.

In the perspective to make competitions like SHREC of
ever increasing usefulness and popularity, maybe some of
the previous considerations could be addressed in construct-
ing the test database and in performing the final evaluation.
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Abstract 
 

In this paper, we describe two methods used in 
Shape Retrieval Contest of 3D Face Models. The first 
applies Iterative Closest Point Algorithm (ICP) to 
register two reduced point clouds. Each reduced point 
cloud is downsampled based on the distances for all 
points to their mean. The second method takes local 
linear fitting error into account for retrieval. Finally, 
the evaluation scores for these two methods on 3D face 
model retrieval are shown. 

 
1. Introduction 
 

Recently, the number of available 3D shape models 
is rapidly increasing because of the advances in 3D 
modeling and acquisition. Researchers have focused 
not only on traditional content-based image/video 
retrieval, but also on 3D shape retrieval. Many 3D 
search engines and shape matching methods are 
developed. A good survey was presented by Tangelder 
et al. in [1]. In the Shape Retrieval Contest of 3D Face 
Models, the 64 queries are issued on a huge database 
with 1516 three-dimension face models. Although 
these face models are generated by a morphable model 
[2], the correspondence between two face models are 
not kept. Efficient and effective matching methods are 
needed due to the size of database. 

For achieving computational efficiency, we apply 
the iterative closest point (ICP) algorithm [3] on the 
reduced point clouds. For effectiveness, the local 
property of the surface is considered. The evaluation 
scores show that the first implementation has better 
performance in precision than the second one. 

In section 2, some preliminaries and the two 
methods are described in details. Some experimental 
results are shown in section 3. Finally, the evaluation 
scores and conclusion are given in the last section. 

 
 
2. Preliminaries and Method Description 
 
2.1. Preliminaries 
 

The methods for comparing two 3D models can be 
roughly categorized into two types. One type is to first 
register one model to the other model and computing a 
distance between the two registered models. The other 
type uses invariants of surfaces under rotation and 
translation. 

The registration between two models involves 
aligning two models in the same coordinate after 
performing certain transformation on one of them. 
Given a few correspondence point pairs between two 
models, we can easily compute the registration 
between these two models. Without correspondence 
pairs, the model registration problem is much more 
difficult. 

The ICP method can be used to align two models 
whenever the correspondence pairs are given or not. 
For each point at one model, it iteratively finds the 
nearest point at the other model. 

The invariants can be used in registration or 
matching if they are Euclidean invariants that are 
invariant to 3D motion. Curvature, moment, and 
spherical harmonic invariants are usually used. Sharp 
et al. [4] integrate these invariants to the ICP algorithm. 

 
2.2. The First Method (RUNNR 1) 

 
Our retrieval system performs the following 

algorithm and lists query results in runfile1 (RUNNR 
1). The flow chart of the algorithm is shown in Figure 
1.  First, a face model is served as the reference model 
R and is downsampled by a factor of 10 (this 
downsampled version is denoted by Rd). All face 
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models (query and data models) are also downsampled 
by a factor of 10. In order to downsample models 
efficiently, we adopt a simple downsampling method. 
Given a model, all points in a model are sorted by their 
distance to the mean of this model and their indices are 
reassigned according this list (starting from 1).  All 
points whose new indices are divided by 10 are 
collected into the downsampled version of this model. 
The system performs ICP for aligning a downsampled 
model (a query model or a data model) to reference Rd. 
Hence, all models have the same pose. When the 
system is given a query and a data model in DB, a 
point of the data model corresponds to the nearest 
point in the query (many-to-one mapping). The 
dissimilarity between two models is estimated by 
summing distances over all corresponding pairs. 
 

 
 
Figure 1. The flow chart of the first method. 
 
2.3. The Second Method (RUNNR 2) 
 

This method is based on the model registration 
method in RUNNR 1. Moreover, we introduce a 
feature in this run. We not only care about the 
distances of pseudo correspondence pairs but also the 
local property of face models. (We call these 
correspondence pairs, calculated by ICP, with pseudo 
ones because the faces are not the same and these 
correspondence pairs are usually exactly correct.) Our 
feature value at a vertex p is a minimum error E(p) 
which represents the least square error of fitting the 
neighbors of p with a plane. The neighbors of a point 
are obtained by the face structure. The face structure in 
a model consists of many polygons which are 
represented by several vertices.  For a vertex p, we 
select a set Fp of all faces containing the vertex p. The 
neighbors of p are all vertices that are contained in a 

face of Fp. A weighted distance of a correspondence 
pair (p,q) is abs(E(p)-E(q))*dis(p,q) where abs means 
absolute value and dis(p,q) is the distance between p 
and q. The dissimilarity between two models is 
estimated by summing weighted distances over all 
corresponding pairs. The flow chart of the second 
method is shown in Figure 2. 
 

 
 
Figure 2. The flow chart of the second method. 
 
3. Experimental Results 
 
3.1. Downsampling by Mean 
 

In the first step, we downsample all models by a 
factor of 10. An example (including original and 
downsampled face models) is depicted in Figure 3. 
The rebuilded surface is constructed by the 
downsampled version with ball size 3 (in Meshlab [5] 
Setting). Some model are properly downsampled, such 
as D0004 depicted in Figure 4. Note that there are a 
few selected points in the nose. 
 
3.2. Aligning Data Models to a Reference 
Model 
 

In the second step, all models are aligned to a 
reference model. This step has great influence on 
performance. Three queries out of sixty-four queries 
are not registered correctly. Our method failed in these 
three queries, Q1046, Q1048, Q1057. They are shown 
in Figure 5. Their average dynamic precisions are 
about 4%; the other queries like Q1003~Q1007 have 
high ADPs from 97% to 75%. The Q1003 has 100% 
precision and 97.3765% ADP. Note that all highly 
relevant items are registered correctly and shown in 
Figure 6. 
4. Evaluation Scores and Conclusion 
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4.1. Evaluation Scores 
 

Ranking results based on mean ADP is summarized 
in Table 1. 
 

Table 1. Mean Average Dynamic Precision. 
Rank RunFile Value 

0 ideal 1
1 ter Haar run1 0.680894
2 Tung-Ying Lee run 1 0.651938
3 ter Haar run3 0.640431
4 ter Haar run2 0.618641
5 Tung-Ying Lee run 2 0.440214
6 Berretti run1 0.301797
7 Berretti run2 0.298608
8 Berretti run3 0.290289
9 Berretti run4 0.287672

10 Berretti run5 0.248614
 

 
4.2. Conclusion and Discussion 

 

The first method basically performs well. However, 
the wrong pose is a tough problem. The good feature is 
needed to correct the wrong pose. The linear fitting 
error in the second method may not be suitable in 
downsampled point clouds. In the future, we may use 
this kind of simple invariants in a part of dense point 
clouds. 
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Figure 3. An original point cloud, a downsampled version, an original surface, a rebuilt surface 
from a downsampled version (D0001) 
 

 
Figure 4. Rebuilt surfaces from downsampled versions (D0000, D0002, D0003, D0004) and the 
downsampled point cloud  (D0004) 
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Figure 5. After registering to the reference model (Q1046, Q1048, Q1057) 

 

 
Figure 6. Before/After registering to the reference model (D1112, D0456, D0947, D0624, D1123) 
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Abstract

Many 3D face matching techniques have been developed
to perform face recognition. Among these techniques are
several variants of 3D profile matching, which are tech-
niques that reduce the amount of face data to one or a few
3D curves. 3D profile curves proved their use in 3D face
recognition, but the selection of the optimal profile or set
of profiles and the best way to match them is still under ex-
posed. In our work we decribe a new pose normalization
method that finds the best fit for a nose template and the tip
of the nose as well. A set of profile paths over the 3D sur-
face starting at the tip of the nose is extracted. These pro-
files are sampled according three different sampling strate-
gies and then matched assuming correspondence between
the samples. Retrieval results on a large database of 1516
face models with difficult sets of relevant classified models
shows Mean Average Dynamic Precisions upto 0.68.

1. Introduction

Many techniques have been developed to compare hu-
man face data using its 3D shape information obtained with
a 3D scanner. Because the 3D shape information of two
scans from the same person may vary in resolution, accu-
racy, pose, coverage and emotion it is difficult to develop
a technique that is generally applicable. However, the use
of 3D shape information is believed to have a useful con-
tribution to the field of face recognition, because traditional
face recognition based on 2D images suffer from the same
variances and has to deal with illumination and scale diver-
sity as well. In this work we focus on 3D face matching
with the use of 3D profiles, a technique with high potential
which has been applied in a very limited manner.
Contribution Our contribution includes a new pose nor-
malization technique and an advanced 3D profile matching
technique. Pose normalization is performed by fitting a nose
template to the scan data and using the inverse transforma-
tion of the best fit to normalize the pose.

The tip of the nose is extracted from the scan data auto-

matically and is used as the origin from which a set of pro-
file curves is extracted in different directions. Such sets of
profiles are used to determine the similarity between faces.
The profiles are sampled according three different sampling
strategies. These samples are assumed to correspond when
two profiles from different faces are matched, this way the
amount of potential correspondences is limited.

2. Material

In this work we compare 3D faces using surface curves
sampled according different strategies. To test the effective-
ness of these different strategies for face matching, we ap-
plied them as different runs on the database from “SHREC
2007 - Shape Retrieval Contest of 3D Face Models” (see
[4] for more details). For each run relevant scores are com-
puted based on the retrieval of relevant classified faces for
64 different queries.

3. Method

3.1. Overview

To normalize the pose of a 3D face model and to de-
tect its tip of the nose, we apply template matching with a
nose template in high curvature areas. Starting from the tip
of the nose we then extract profile curves in different direc-
tions, which are sampled according three different sampling
schemes. To determine the similarity of two different faces,
we match the profiles of the two faces using the samples as
predefined correspondences.

3.2. Pose normalization

In this paper we describe a pose variant method for 3D
face recognition. Therefore we need to normalize the pose
of the 3D face before we can do face matching. This is done
by matching a nose template in high curvature areas of the
face. Each vertex of a face model can be considered as a
potential location for the initial placement of our nose tem-
plate. Generally, the tip of the nose is a location with high
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(positive) curvature, which makes it possible to exclude a
large number of potential placements (i.e. vertices) based
on a simple curvature threshold heuristic.

At first, we need to determine the areas of high curvature
which presumably contain the tip of the nose, but also the
areas around the ears, eyebrows, chin, etc. To extract these
areas we apply Rusinkiewicz’s curvature estimation algo-
rithm [2] to obtain an estimation of the mesh’s curvature at
each vertex. Secondly, we select thetc (tc=8) percent of
vertices with the highest curvature as potential nosetip lo-
cations to place our nose template on.

For each of the selected vertices, we have its position
(pv) and normal direction (nv). For ournose templatewe
determine the position of the nosetip (pt) and its normal di-
rection (nt). To determine the optimal location for the nose
template in the scan data, we place the template on each
selected vertex and apply the Iterative Closest Point (ICP)
algorithm [1] to obtain the best local fit based on the Min-
imum Least Squares (MLS) distance of the templates ver-
tices to their closest points in the scan data. Because the
ICP algorithm is known to get stuck in local minima, the
initial placement of the template is important. Therefore we
place the nose template withpt onpv and withnt aligned to
nv. This limits the degrees of freedom to an unknown rota-
tion around the normalnt. Because the nose template has a
characteristic shape, the unknown rotation around the nor-
malnt causes a problem. To overcome this problem we fit a
nosetip templateto the selected vertices first. This template
covers only a small part aroundpt of our nose template,
which resembles a symmetric bump. Because of the sym-
metry we can fit this template to the scan data independent
of the rotation around its normalnt. Finally, the entirenose
templateis fit on the locations where thenosetip template
obtained a good fit (i.e. low MLS error). The nose template
is placed using eight different rotations (every 45◦) around
its normalnt to obtain the optimal fit with the ICP algo-
rithm. The inverse transformation matrix for the optimal fit
is used to normalize the face’s pose. The point in the scan
data closest topt is defined as the tip of the nose used during
profile extraction.

3.3. Profile extraction

The information we use to match faces is a set ofNp

(Np=180) profiles. We define a profile as a curve that starts
from the tip of the nose and follows a path over the surface
mesh with a fixt angle in the XY-plane. Such a path is de-
fined by the intersection points of the mesh’s triangles en-
countered along the way. Basically we extract a path (or
profile curve) for every 360/Np degrees in the XY-plane
with the tip of the nose as origin. The path ends when-
ever the Euclidean distance between the current path loca-
tion and the tip of the nose becomes larger than 90 mm.

(a) (b) (c)

(d) (e) (f)

Figure 1. The visualization of our pose nor-
malization steps. The applied nose (pink)
and nosetip (green) templates. The original
face (b) with high curvature areas (c), optimal
(dark blue) locations for the nosetip template
(d) and optimal fit for the nose template (e).
The final normalized face (f).

Figure 2. Pose normalization of different
faces. Top: initial faces. Bottom: pose nor-
malized faces with fitted nose templates.

Beyond this distance the chance of missing data or hair cov-
ering parts of the face increases. Before profile extraction
the pose normalized face is centered with its nosetip in the
origin, so that the extracted sets of profiles of two different
faces are aligned.

3.4. Profile matching

A single profile defines a 3D curve over a surface start-
ing from the origin. To compare two corresponding curves,
that is, two curves extracted with the same XY-orientation
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(a) (b)

(c) (d)

Figure 3. A set of 90 profiles (shown from a
different view) are sampled using increasing
(b) Z-, (c) XY-, and (d) C-distances resulting
in different contour curves.

as shown in Figure 4, we select and match samples from
both curves according three different sampling strategies:
samples with similar (1) Z-distance, (2) XY-distance and (3)
curve(C)-distance to the tip of the nose. Combining samples
along all profiles with a similar sample-distance generates
approximations of contours curves (see Figure 3), such as
the Z-contour used for face recognition by Samir et al. [3].

The distance between a pointp on curveP and a point
q on curveQ, using the tip of the nose (pnt=origin) and the
Euclidean distancee(p, q) is defined as:

d(p, q) = (e(p, pnt) − e(q, pnt))2 = (|p| − |q|)2

A samplep with a fixt Z-distance can consist of multiple
pointsp and a single or no point at all for all three sampling
strategies. In the distance measure for two curves we ne-
glect corresponding samples without a profile intersection
point, and only the best matching point in case of multiple
sample points. The distance between two profiles sampled
with Ns samples (pi andqi) defined by either the Z-, XY-,
or C-contours is then defined as the sum of best matching
points for corresponding samples:

d(P,Q) =
Ns∑
i=1

min∀p∈pi,∀q∈qi
d(p, q)

Figure 4. Example of an Z-, XY-, and C-sample
on the profile curve from nose to forehead.

The advantage of this distance measure for two profiles is
that it matches samples invariant to translations and rota-
tions, which is a useful property when matching two non-
corresponding profile curves as in Section 3.5. Further-
more, missing data has no influence and the appearance of
multiple contours for Z-sampling is dealt with.

3.5. Face matching

To determine the similarity between two faces we pose
normalize the faces and extract for each face a set ofNp

profiles and for each profile a set ofNs samples. When
two faces are similar we expect them to be pose normalized
similarly, however, small misalignments can occur. There-
fore, we match each profile of face A to a small subset ofts
(ts= 30

360 ) percent of theNp profiles around the ‘correspond-
ing’ profile of face B and retain the distance of the best
matching profile. The distance measures of profiles from
face A to face B and vice versa are summed and normalized
to the number of profiles. Theoretically, the comparison
can be made more robust to noisy profiles and/or emotion
variance by selecting a percentage of best matching profile
curves to describe the difference between two faces.

4. Results and evaluation

To prove the usefulness of our pose normalization and
profile matching scheme using different sampling strate-
gies, we applied our face matching system to the SHREC
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Method Identical 1st MAPH MAPR MADP
C sampling (run1) 63/64 0.6613 0.4775 0.6809
XY sampling (run2) 43/64 0.5618 0.4536 0.6186
Z sampling (run3) 48/64 0.5945 0.4782 0.6404

Table 1. Retrieval results of our methods

3D Face database to retrieve the relevant faces for each
query. For each normalized face in the database we ex-
tracted profiles inNp=180 directions starting from the lo-
cated tip of the nose. Each profile is then sampled with at
mostNs=50 samples following the three different sampling
strategies: C-distance (run 1), XY-distance (run 2), and Z-
distance (run 3). The sample step size is fixt for each strat-
egy, in such a way that all sampling strategies have approx-
imately the same number of samples along a profile curve.
We matched two faces using allNp best matching profiles.

Some retrieval results of our experiment are shown in
Table 1, namely the Mean Average Precision of both highly
and all relevant faces (MAPH and MAPR), the Mean Av-
erage Dynamic Precision (MADP) and the number of iden-
tical query faces on top of the ranked list (Identical 1st).
These results lead to the following observations. Firstly,
the pose normalization is not perfect, otherwise all faces
in the database identical to their query face would have a
dissimilarity value equal to zero and thus retrieved as first
element in the ranked list (Identical 1st). Secondly, the C-
sampling strategy is more robust to small misalignments,
because the number of identical faces retrieved first is sig-
nificantly larger than for the other two strategies. Thirdly,
the highly relevant classified faces are easier to retrieve than
the marginally relevant faces, because the MAPR is lower
than the MAPH for all strategies.

4.1. Discussion

When we compare the results of our methods to those of
other methods of the 3D face retrieval contest of SHREC’07
we see that our methods perform relatively well based on
the performance measures described earlier (see Table 2).
The fact that all methods except one have trouble retriev-
ing the identical models first, shows that pose normalization
is a highly difficult task. Our XY-sampling method (run2)
returns 43 identical models first, while our C-sampling
method (run1) returns almost all (63) identical models on
top of the list. This raises the question whether 3D face
recognition methods should focus on perfect pose normal-
ization or on methods that are more robust or even com-
pletely invariant under rotations.

A disadvantage of our method is that extracting a pro-
file path requires a manifold mesh with proper topology and
preferably no holes. Our method can be extended to over-
come these problems by defining each profile as the inter-
section curve of the face with a plane, which is less efficient.

Method Identical 1st MAPH MAPR MADP
ideal 64/64 1.0 1.0 1.0
ter Haar run1 63/64 0.6613 0.4775 0.6809
Tung-Ying Lee run 1 50/64 0.6159 0.4785 0.6519
ter Haar run3 48/64 0.5945 0.4782 0.6404
ter Haar run2 43/64 0.5618 0.4536 0.6186
Berretti run3 35/64 0.2253 0.1741 0.2903
Berretti run1 35/64 0.2320 0.1778 0.3018
Berretti run4 34/64 0.2213 0.1735 0.2877
Berretti run2 34/64 0.2288 0.1777 0.2986
Tung-Ying Lee run 2 32/64 0.3694 0.2976 0.4402
Berretti run5 20/64 0.2073 0.1598 0.2486

Table 2. Retrieval results of SHREC 2007

The retrieval results shown in Table 2 are in general not
very high. Besides the difficulty of pose normalizing the 3D
face models, we expect the large embedding of the database
(most face recognition databases are small) and the dissim-
ilarity of the relevantly classified faces are the main contri-
butions to this outcome of the retrieval scores.

5. Concluding remarks

In this work we proposed a new pose normalization tech-
nique and an advanced 3D profile matching scheme. We
performed pose normalization by fitting a nose template to
the scan data and using the inverse transformation of the
best fit to normalize the pose. The fitted template is used
to extract the tip of the nose. Starting from the tip of the
nose we extracted a set of profile curves, which were sam-
pled according three different sampling strategies, namely:
C-sampling, XY-sampling, and Z-sampling.

Results from the 3D face retrieval contest show that C-
sampling has the highest performance based on the num-
ber of identical query faces retrieved first, the mean average
performance of highly relevant faces, and the mean average
dynamic precision.
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