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Abstract

Most methods for protein functional classification rely be tomparison of their amino
acid sequence. However functional classification of pratésnstrongly defined by their
three dimensional structure. This approach is based ondatithat proteins from one fold
keep the same structure even after evolutionary changesiofsequence. The underlying
theme of the work is: 'can we find a unique invariant represenmefor the structure of
each protein fold?’.

A new method for protein structure description based on @riniegration (Gl) is
presented. Since spatial information is generalized uskhgSpherical Harmonics are
added to retain rotational information. These structurahfures are evaluated on well-
known testing sets from SCOP and CATH databases and their pefme is compared
to existing protein classification algorithms like DALI aR&IDE. Compared to DALI the
proposed method has significantly lower time consumptiorevitwd classification results
are slightly worse. The PRIDE algorithm yields worse resuientthe proposed method.

The results achieved in this work can compete and in some casggsrform the es-
tablished methods considering the classification accueanythe time requirements. The
method can be scaled according to different applicationadjysting the feature size and
implementing different kernels.

Zusammenfassung

Die meisten Methoden zur funktionalen Proteinsuche unasdifikation betrachten nur
die Aminosaurensequenz und nicht die dreidimesionale Struktur €inagins. Die Funk-
tion eines Proteins ist allerdings sehr stark durch seie@unensionale Struktur fest-
gelegt. Der Grundifr diese Sichtweise ist, dass Proteine aus einer Faltuaggsktieselbe
Struktur bewahren, selbst nachdem sickhwend der Evolution die priame Sequenz des
Proteins veiindert hat. Das zentrale Thema dieser Arbeit igmiken wir eine invariante
Rep@asentationiir jede Proteinfaltungsklasse finden?

Eine neue Methode zur Beschreibung von Proteinstruktursietgad auf Gruppen-
integralen (GI) wird vorgestellt. Da mit Hilfe von Gl di&iumliche Information ver-
allgemeinert wird, werden Kugedithenfunktionen (Spherical Harmonics) hinzugenom-
men um Rotationsinformationen zu behalten. Diese strulktuar®lerkmale werden auf
wohl bekannten Testdateitgen von den SCOP und CATH Datenbanken ausgewertet
und ihre Leistung mit den bereits existierenden autonfagis&lassifikationsalgorithmen
DALI und PRIDE verglichen. Im Vergleich zu DALI hat die vorggdagene Methode
wesentlich geringere Zeitanforderungen, aber die Kl&sgiinsergebnisse sind etwas
schlechter. Der PRIDE Algorithmus liefert schlechtere Brgsse als die vorgeschlagene
Methode.

Die Ergebnisse dieser Arbeibknen sich mit den beiihrten Methoden messen und
sie in manchen &len hinsichtlich der Klassifikationsgenauigkeit und deitanforderun-
gen sogaiiberbieten. Die Methode kanirfverschiedene Anwendungen angepasst wer-
den, indem man die @fe der Merkmale und die Kernelfunktion den Anforderungen
anpasst.
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Chapter 1

Introduction

If we could not only describe the [protein] sequences but plsaounce the law by which
they assemble, the secret of life would be declared open dtiheauratio discovered!

Jaques Monod (1970)
from Chance and Necessity, P.94

1.1 Proteins

Proteins are the main essential active agents in biochgmigithout them almost none
of the metabolic processes that we associate with life wtakd place. Therefore, most
reviews on proteins concentrate on their chemical kingititsractions and detailed stere-
ochemical arrangement of the catalytic groups. In this wbdwever, proteins will be
viewed from a different angle - their biology and chemistml twe completely ignored.
Instead, their overall structure will form the central topf investigation. This approach
is based on the fact that proteins from one fold keep the stimetgre even after evolu-
tionary changes of their biochemical relations.

The underlying theme of the work is : 'can we find a unique irarrepresentation of
the structure of each protein fold?’. If we can find such a @rint’ for each protein fold,
we could draw a complete map of the protein structure spas¢engné easy to classify
new proteins and also contribute to answering the questirch structural forms can
proteins adopt at all?’

1.1.1 Protein folding

In Figure 1.1 the core machinery of life is depicted whichnisarent in every cell. This
machinery has two main functions: To transform DN RNA ? and to translate RNA
to proteins. The double stranded DNA is transformed by thlxgme polymerase to single
stranded RNA which in turn is translated by the ribosome toraima acid sequence. The

!Deoxyribonucleic acid
2Ribonucleic acid



CHAPTER 1. INTRODUCTION

main building blocks of proteins are amino acids which aneegated from RNA via the
genetic code. As shown in Figure 1.1 one amino acid is codetreg nucleotides.

<

Ribosome

Figure 1.1.Core Machinery of Life. DNA is transformed to RNA and RNA is translated
to amino acids which are the building blocks of proteins.

Although the genetic code is known since 1961he prediction of the three dimen-
sional structure a protein will fold into is still a large fiebf research. The interaction
between the atoms of the amino acids and different forcésgaoh them are so complex
that it is impossible to predict their behavior. Only by exaimg already known protein
structures we can guess what is going to happen during tedpprocess.

1.1.2 Relation between structure and function

Why do we want to know a protein’s fold? If we could predict thetpin’s fold from
its amino acid sequence, we would be in a much better podibigmedict the protein’s
function as well. The binding site of a protein has a particshape which enables it to
bind to a ligand, a virus or other molecules. Thus, in ordgrddorm a certain function,
a protein needs to have an adequate shape. Throughoutiengiubteins did mutate in
order to achieve the desired shape by changing the aminsagitence which uniquely
defines the protein’s structure. The cycle of life at the roolar level as described by
Michael Levitt is depicted in Figure 1.2.

1.2 Pattern Recognition

The main topic of pattern recognition is the operation ansigieof systems that rec-
ognize patterns in data. It encloses subdisciplines likergninant analysis, feature ex-
traction, error estimation, cluster analysis (togethenetimes called statistical pattern

3The German biochemists H. Matthaei and M. Nirenberg solkedjenetic code in Mai 27th 1961 at 3
a.m.
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Cycle of Life

VAL ALA VAL SER GLN ASN
ASP PHE PRO TRP PRO PRO
ARG MET THR THR
HR TRP PHE SER ILE GLl ¢ ructure
LY ARG ILE ASN LEU LEU
PRO PRO O ALA HIS PHE Sequence

LEU THR GLU GLN PRO GLU
LEU ALA ASN LYS VAL ASP MET VAL TRP ILE VAL oLy

VAL GLY SER LEU ASN C
MET GLY ILE @

SER ASP THR PHE PHE PRO GLU ILE ASP LEU 1¥s TTR 2
LY3 LEU LEV PRO GLU TYR PRO GLY VAL LEU SER ASP VAL W o
GLN GLU GLU LYS GLY ILE L¥S TYR LYS PHE GLU VAL TYR .
GLU LYS ASN ASP

—i. Function

|

Figure 1.2:Cycle of Life. The structure is defined by a unique amino acid sequence and
imposes a function on the protein. Through evolution thenpry sequence has changed to
achieve the necessary function. Here the cleft in the strecif the protein is the perfect
binding site for a ligand.

recognition) and grammatical inference and parsing (sonest called syntactical pat-
tern recognition). Important application areas are imagayais, character recognition,
speech analysis, man and machine diagnostics, persoffichitn and industrial inspec-
tion.

In the following areas, closely related systems are studiesimilar tools are devel-
oped:

¢ Avrtificial Intelligence (expert systems and machine leaghi

Neural Networks

Computer Vision

Cognitive Sciences and Biological Perception

Mathematical Statistics (hypothesis testing and paranestenation)

Nonlinear Optimization

Exploratory Data Analysis

In this work pattern recognition is used to describe andsdhagprotein structures.
The process of description and classification of new prat#imctures can be enhanced
by finding intelligent data structures and fast classifaratlgorithms. The generation of
automatic models relies on expert opinion and does not mgberes obsolete. Rather it
should improve the classification and help on getting mosght into the protein struc-
ture universe.
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1.3 Protein Shape Recognition

The protein shape recognition approach used in this worlddeei roughly described as
in Figure 1.3. In a preprocessing step, protein structuresalved by crystallographers
and the 3D coordinates of the protein structures as well isfuinformation is written

in a text file called PDB File. The PDB Files are freely avdiain the internet and are
downloaded for further processing to a protein databasee&ah structure of the protein
database features are extracted and saved to a featureskataldhen a user poses a
query for a protein structure, the classifying server mefua list of similar structures. If
the structures have already been classified according te saperts, the quality of the
returned results can be evaluated and then further pratésselect the features which

yielded the best results.

< Feature <>

extraction
Protein Feature —— + |Classification
DB DB Server
NMR, X-Ray
Feature selection Evaluation

Figure 1.3:Protein Structure Recognition. The pattern recognition process used for
classification of protein structures. After feature exiiacstructural information is saved
in a protein database. When a user performs a structural ,qaerassification server
outputs the most similar structures to the query structline output is evaluated and
with this knowledge the features can be reselected.

1.4 Goal of this work

The number of currently known protein structures is 40,008 still increasing by over
1000 new solved protein structures per year. In order tonizgathe protein structure
space, different methods have been applied and differeteiprorganization platforms
already exist in the internet (See Chapters 3 and 4 for exanple

In former applications, protein structures were compadgialignment techniques
[13, 18] or by visual inspection of experts [20]. Also tedumes from machine learning

4
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and artificial intelligence [14] were applied which use soeerning network for clas-
sification. Statistical methods were applied in PRIDE [4] lgldyists, while the Gauss
integral [26] was used by mathematicians in order to desgibteins.

A good overview of protein structure classification is givefi33]. The desired prop-
erties of a protein structure comparison algorithm aredish [6]. These properties are:

1. insertions or deletions to the sequence should not bdiped&oo heavily

2. reasonably robust algorithm: small pertrubations ofdégnition should not make
too much difference in the measure

3. easy to compute

4. able to discover local and global alignments

5. its success should be validated by empirical studies®eRPDB
6. acceptance by the protein scientists

Regarding these aspects, a new method for protein strucbonparison was devel-
oped.

The approach of this work is completely new since as to thkaist knowledge no
other method has been introduced which uses invariantythteatescribe proteins. We
started our work with the idea of shape histograms desgipiotein structure [34] and
extended the idea to group integrals with spherical harasof@4]. In order to describe
protein structure only structural features should be used.

Our goal is to establish a scalable method for protein straaiescription providing
every wished trade-off between quality and complexity.

1.5 Structure of this work

After the introduction and the motivation of this work, thecdiment is organized as fol-
lows:

e Chapter 2: The basic knowledge about protein’s chemistry/biologyrespnted.

e Chapter 3: Protein structures can further be grouped to form proteinsification
hierarchies. Classification can either be performed by huexperts (SCOP and
CATH) or by automatic classification (DALI) hierarchies. SC@Rd CATH are
explained in this chapter.

e Chapter 4: Automatic classification methods and the DALI hierarchyexglained
and discussed.

e Chapter 5: The new method for protein structure classification is prasg
e Chapter 6: A benchmark of the existing methods and the new method is atedp

e Chapter 7: Conclusions and an outlook is presented.



Chapter 2

Protein Structure

The data used in this thesis consists of coordinates an@seguumbers of atoms build-
ing a protein structure. This information is gained from PBIBs which are publicly
available from the RCSB (Research Collaboratory for StrucBi@hformatics) Protein
Database (PDB) homepage

In the first part of this chapter the protein structure higngiris explained. In the
second part the PDB file format and the parsing of the relewdotmation will be spot-
lighted.

2.1 Protein Architecture

The protein structure can be described at four levels ofildgtating with the primary
structure at the very basic level and leading to the quatgrstaucture being the most
global description level of a protein structure.

2.1.1 Primary Structure

Theprimary structureof a protein is defined by the sequence of amino acids on iiecha
An amino acid is made up of@,-atom (the central atom), a hydrogen atom (H) attached
to the C,-atom, a carboxyl group({OO~), an amino group ¥ H;") and a side chain
(R) (See Figure 2.1). The side chain determines the chemicpéepy of the amino acid.
Removing side chains leaves us with linked repeating u¥its — C,H — C'O, which
make up what is called the 'main chain’ or 'backbone’ of thetpin.

A variety of side chain conformations can be seen in protbegtsause rotation can
occur around many side chain bonds. However, most aming &eie a restricted set of
preferred conformations, called rotamers.

Ihttp://www.pdb.org



CHAPTER 2. PROTEIN STRUCTURE

-
H,N—C-COOH
R

Figure 2.1:Amino acid structure. The chemical structure of an amino acid. In the middle
theC, atom, left the amino terminal, right the carboxyl terminfdldenotes the hydrogen
atom, R the side chain.

There are 20 amino acids which can occur in proteins. Theyeativided into three
groups according to their chemical properties: hydroptiotiiarged and polar (See Ap-
pendix A). Hydrophobic amino acids try to keep away from wated are therefore found
in the core of a protein.

The amino acids in a protein are held together by peptideb(iFidure 2.2). A peptide
bond is a chemical bond formed between two molecules wheaati®xyl group of one
molecule reacts with the amino group of the other moleceleasing a molecule of water
(H-20). Peptide bonds are very stable: There is no rotation artwn@-N bond.

Two or more amino acids linked by a peptide bonds are reféored a peptide. Once
an amino acid is incorporated into a peptide, it is referceastan amino acid residue.

The peptide bond has partial double-bond character beadussonance between
the carbonyl and amide groups. The double-bond charadtéitis rotation around the
peptide bond. As a consequence, atoms participating inadhe &nd all atoms within one
bond of it are restricted to the same plane.

While peptide bonds resist rotation, maét- C,, andC,, — C bonds are only bounded
by steric constraints. Rotation aboutNa— C, bond is described by an angle called
and rotation about &, — C bond is described by an angle calledSteric interference
between backbone and side chain atoms restsieisd) rotation.

5 R, H
NH [ | I
2 & CH N HOOC
NN N
<|3H N iI: CH
By I-ll % Il3
Amine
ks gatcia

Figure 2.2:Peptide bond. The carboxyl group of one molecule reacts with the amino
group of the other molecule to form a peptide bond.

One of the most important principles in understanding pnoséructure is that most
combinations ofh andy are unfavorable for steric reasons. There are, howevelhtoax
sets of permitted combinations: regusscondary structureare formed by repetition of
these conformations - in one case,anhelix, and in the other , 8—sheet.

7



CHAPTER 2. PROTEIN STRUCTURE

2.1.2 Secondary Structure

Three types of regular arrangements are dominating theipre¢condary structurehe
a-helix, the 3-sheetand thes-turn.

a-helices are common structures in proteins partly becawse and ¢ angles re-
guired to form them are favorable (see Section 2.1.1). Iiti@agthe conformation allows
stabilizing hydrogen bonds to form between the amide nénsgand carbonyl oxygens
of residues close together in the sequence. Hydrogen bareptes and donors in an
a-helix exhibit a characteristic spacing, by conventioreredd to as i, i+4. The carbonyl
oxygen of each residue)(@ccepts a hydrogen bond from the amide nitrogen located fou
residues further along ¢ 4) in the sequence. Repetition of the + 4 pattern covers the
length of then-helix with hydrogen bonds running roughly parallel to thedixaxis (See
Figure 2.3).

AR

(b) (c) (d)

Figure 2.3:Alpha helix. Different representations of orehelix: amino acids are repre-
sented by (a) all atoms (b) only their backbone (c) amgtoms (d) as a cartoon. Images
from [1] with Chime.

The other common secondary structure found in proteins Sibleeet - is made up of
smaller structures calle@lstrands. Likex-helices,5-strands are formed by repetition of a
favored amino acid conformation. In this case, repetiteads to an extended conforma-
tion in which the side chains project out more or less ondteéng sides of the backbone.

A broad arrow is often used to schematically represehstrand. The arrow points in the
direction of the carboxyl terminus (See Figure 2.4 (b)). kggn bonding groups of the
backbone lie more or less in the plane of the arrow. Turnifhgidé chains and turning on
oxygen and nitrogen atoms makes this easier to see (Figli(€)2- 5-strands hydrogen
bond with each other to formi-sheets. In an antiparallel sheet arrangement, strands run
in opposite directions (Figure 2.4 (d)). However, paradighngements are also possible.
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(a) (b) (€ (d)

Figure 2.4:Beta sheetDifferent representations of@&strand (a)-(c) and the forming of
a g-sheet (d). Images from [1] with Chime.

Many antiparallel sheets are connected by sharp turngdcaturns (See Figure
2.5). Several common and well-defingdurn structures have been identified; most have
characteristic sequence features. For example, some ¢ypes1s require a glycine at a
certain position. Strand pairs that are parallel or thahateontiguous in the polypeptide
sequence must be connected by something other thanm, for example, by an-helix.

Figure 2.5Beta turn. A g-turn connects two antiparallglstrands. Image from [1] with
Chime.

2.1.3 Tertiary Structure

The global structure of a polypeptide chain is caliediary structureor fold. A globular
structure buries many of the protein’s atoms in the intedod isolates them from the
surrounding medium. Partitioning of charged and partiahgrged atoms to the surface
and uncharged atoms to the core is an important feature béigloproteins, and thought
to be the key to the forming of tertiary structure.

Something that is not apparent from the representationsagglary structures that
we looked at in the previous section is the tight packing ofreg within a folded protein
(See Figure 2.6). An exception to the rule of tightly packéabglarity can be seen in
fibrous proteins like collagen. (Another exception are amagid sequences consisting
of only one or a small number of the twenty amino acids. Theseotien found within

9



CHAPTER 2. PROTEIN STRUCTURE

otherwise normal-looking protein sequences, particpiareukaryotes. They are thought
to lack well-ordered structure.)

Figure 2.6:Protein fold. In (a) the cartoon of a protein structure is shown. The pagkin
of the backbone of the same protein structure is shown inligbfc) all the atoms of
the protein are pictured revealing a dense packing of thetstre. Images from [1] with
Chime.

Some polypeptide chains fold into two or more compact glabuhits which could be
imagined as pearls stringed on a chain. These structurtslana calledlomains Domains
usually contain between 30 and 400 amino acids. Althoughehgry structure of two
proteins differs, they do have similar domains in many cases

2.1.4 Quaternary Structure

Proteins that have more than one polypeptide chain haverthftavel of structural or-
ganization calledjuaternary structureThe polypeptide chain of one protein is called a
subunit The quaternary structure describes the spatial orgamizamnd the interaction be-
tween these subunits. The most basic representative oftargagy structure is a dimer.
A dimer is a protein consisting of two identical subunitsuity the quaternary structure
is more complex since many different subunits can occur.

For example, the human hemoglobin which is the oxygen ti@tisig protein in the
blood has two subunits (See Figure 2.7), which are calkedhit ands-unit.

10
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Figure 2.7:Subunits. The quaternary structure of hemoglobin consisting of twizcknt
types of subunits (red and yellow) is shown. Image from [Thv@hime.

2.2 Protein Representation

One of the most exciting questions for a protein analyst mwHloes the three dimen-
sional structure of a protein look like? The structure of at@in determines its function,
since the features of the activating center and the bindteg depend on the precise three
dimensional conformation of the protein. With the help of Rispectroscopy and X-ray
crystallography the protein structure can be solved.

NMR spectroscopy is due to a phenomenon based upon the magrogterty of the
nucleus of an atom: When the nuclei of certain atoms are ineddrsa static magnetic
field and exposed to a second oscillating magnetic field naasce can be observed. The
rotation of the nuclei, the spin, of a proton produces a mtgneoment. The magnetic
moment can assume two orientationsgnd 3) if an electro-magnetic radio-frequency
(RF) impulse acts on it. We obtain resonance by changing tharipblse and can there-
fore detect different magnetic spectra. NMR can be meadoyeabserving the atomic
structure of macro molecules in a very high concentratedtisol (~ 1 mM for a protein
with 15kD).

X-ray crystallographys a technique in crystallography in which the pattern posal
by the diffraction of X-rays through the closely spacedidattof atoms in a crystal is
recorded and then analyzed to reveal the nature of thatdailhis technique can depict
the spatial position of the most atoms in a protein molecelg precisely by applying
Bragg’s law. In fact the first structure of a protein, namelyogipbin, was solved by
X-ray crystallography in 1959.

The Protein Data Bank (PDB) is the single international sotoc8D structure files-
not only proteins but also nucleic acids and macromoleadarplexes. These are exper-
imentally determined structures (solved by X-ray crysigiaphy or NMR spectroscopy)
or theoretical models. Structure files are contributed seaech labs from around the
world and available for viewing or downloading. As to May B)¢here are 36,710 solved
structures in the PDB. The PDB structure statistiase pictured in Table 2.1.

2nuclear magnetic resonance
3http://www.rcsb.org/pdb/holdings.do
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CHAPTER 2. PROTEIN STRUCTURE

Molecule Type
Proteins| Nucleic Acids| Protein/NA Complexes Other| Total
X-Ray 28,835 899 1,349 28 |31,111
NMR 4,568 699 121 6 5,394
Exp. method | | Electron Microscopy 88 9 28 0 125
Other 73 4 3 0 80
Total 33,564 1611 1501 34 | 36,710

Table 2.1:PDB statistics.The types of structures in the PDB by May 2006 and the kind
of technique used to determine the structures.

In the year 2005, 5431 new structures were added. Howevactstes were also
removed if they had a large similarity to related structuFes the growth statistics of the
PDB see Appendix B.

2.2.1 PDB file format

The information stored in a PDB file can be divided into foujongections: title, primary
structure, secondary structure and coordinate sectiotieltitle sectiondata about the
author, the number of chains, functional information ad agthe experimental technique
with which the structure was obtained is listed. In Figui& the title section for human
hemoglobin is shown.

HEADER DEVGEN TRAMNSPORT 07 -JUN-02 1GZXE
TITLE QET T STATE HAEMOGLOEBIN: OXYGEN BOUND AT ALL FOUR HAEMS
COMEND MOL_ID: 1:

COMEPND MOLECULE: HEMOGLOBIN ALPHA CHALIM:

COMEND CHAIN: a, C;

COMPND OTHER_DETAILZ: LIGANDED T STATE:

COMEPND MOL_ID: Z;

COMEND CHAIN: E, D:

COMPND MOLECULE: HEMOGLOEIN EETA CHLIN:

COMPNTD OTHEE_DETAILS: LIGANDED T ITATE

SOURCE HoL_ID: 1:

ZO0URCE ORGANISN SCIENTIFIC: HOMO SAPIENS:

SOURCE ORGANIZHN COMMON: HUMAN;

SOURCE TIS3UE: BLOOD;

SOURCE CELL: RED BLOOD CELL3:

SOURCE MOL_ID: Z;

SOURCE ORGANISN _SCIENTIFIC: HOMO SAPIENS:

SOURCE ORGANISH COMMON: HUMALI:

SOURCE TIZSUE: EBLOOD;

SOURCE CELL: RED EBELOOD CELL3

EEYWDS HAEM PROTEIN, OXY¥GEN BINDING, TRAMNSPORT, COOPERATIVITY
EXFDTL HX-RAY DIFFRACTICON

AUTHOR M.PACLI,R.LIDDIMNGTON, J.TAME, L. WILEINION, ¢, DODSCH
REVDAT 1 05-JUL-02 1GEZX u}

m -] @ b W

O W m -1 ok M

-

Figure 2.8:Title section. The title section of the PDB file for hemoglobin is presented.

The primary structure sectiotists the sequence of the amino acids as three letter
codes according to the chain they belong to (See Figure 2.9).

Thesecondary structure sectioaports about the helices, sheets and turns of a protein
chain. In every line the start and end amino acid for eachretany structure element of
a chain is reported (See Figure 2.10). Hemoglobin consfs38 a-helices. For each of
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CHAPTER 2. PROTEIN STRUCTURE

IEQREZ 1 B 146 WAL HIZ LEU THR FRO GLU GLU LY3 3ER ALA WAL THR ALL
SEQRES Z2 B 146 LEU TEF GLY LYS VAL AZN VAL AZP GLUT VAL GLY GLT GLU
SEQRES 3 B 146 ALL LEU GLY ARG LEU LEU VAL WAL TYR PRC TRP THE GLMN
IEQREZ 4 B 146 ARG PHE PHE GLT 3IER PHE GLY L3P LEUT SER THR FRO LSP
SEQRES 5 B 146 ALL WAL MET GLY AZN PEOQ LTS VAL LY¥3 ALL HIZ GLT LT3
IEQRES 6 B 146 LYS WAL LEU GLY ALAL PHE 3ER AZP GLY LEU ALA HIZ LET
IEQREZ 7 B 146 ASP ABN LEU LYS GLY THE PHE ALA THR LEU 3ER GLIT LET
SEQRES 8 B l4c HIS CYS ASP LYS LEU HIZ VAL AZP PRO GLUT ASH FHE LERG
IEQRES 9 B 146 LEU LEU GLY A3M VAL LEU VAL C¥3 VAL LEUT ALA HIZ HIZ
JEQREZ 10 B 146 PHE GLY L¥3 GLUT PHE THR PRO PREO VAL GLN ALA ALA TYR
SEQRES 11 B 146 GLN L¥3 VAL WAL ALAL GLY WAL ALL ASN ALA LET ALA HIS
JEQRES 12 B 146 LY3 TYR HI3

Figure 2.9:Primary structure section. The primary section of the PDB file for chain B
of hemoglobin is presented.

the four chains (A-D) the beginning and the end of eadtelix is listed. The number on
the far right denotes the number of residues involved in Hréqulara-helix.

HELIX 1 1 SER 4 3 GLY & 15 1 16
HELIX 2 2 HIZ & z0 PHE 4 36 1 17
HELIX 3 3 PRO 4 37 PHE A 43 5 7
HELIX 4 4 SER & 52 HIZ 4 7z o1 21
HELIX 5 5 AP 4 75 LEU A 850 1 ]
HELIXZ 3 6 LET & g0 L¥3 A S0 1 11
HELIXZ 7 7 PRO A 95 LEU A 113 1 is
HELIXZ g 4 THE 4 118 THR A 137 1 z0
HELIXZ =] S THE B 147 LYS B 180 1 14
HELIXZ 10 10 ASN E 18z TYRE B 178 1 17
HELIX 11 11 PEOE 179 PHE E 185 5 7
HELIXZ 1z 1z PHE E 185 GLY BE 189 5 5
HELIZ 13 13 THE B 193 4SSN B zZ00 1 g
HELIZ 14 14 AN B Z00 LEUE 2158 1 hE=]
HELIX 15 15 AN B 223 PHE B 228 1 ]
HELIX 1s 1s PHE E 228 L¥3 B 238 1 11
HELIX 17 17 PRO E 243 GLY B 262 1 zo
HELIX 18 18 LYS BE 263 PHE B 265 & 3
HELIX 1% 15 THR B 266 HIZ B 286 1 z1
HELIXZ Z0 20 BER C 403 GLY C 418 1 16
HELIXZ 21 21 HIS C 420 PHE C 436 1 17
HELIX 22 Z2 PRO C 437 PHE C 443 5 7
HELIXZ 23 23 BER C 452 ALAL C 471 1 z0
HELIXZ Z4 24 ASF C 475 LEU C 450 1 ]
HELIX 25 5 LEU C 480 L¥s C 450 1 11
HELIXZ Z6  Z6 ABP C 494 VAL C 4596 5 3
HELIZX Z7 &7 AN C 497 LEU C 513 1 17
HELIZ Z& &8 THR C 518 THR C 537 1 z0
HELIX 28 28 THE I 547 GLY I 559 1 13
HELIX 30 30 ABN D 582 TYR D 578 1 17
HELIX 31 31 PROD 579 PHE D 585 & 7
HELIX 32 32 PHE DI 585 GLY D 583 &5 5
HELIX 33 33 THE D 593 ASN D s00 1 =1
HELIXZ 34 34 ASN D 600 ALL D 819 1 z0
HELIXZ 35 35 MBN D 623 LYS DI 838 1 16
HELIX 36 36 PRO D 643 GLY I 6862 1 z0
HELIXZ 37 37 LYS D 663 PHE I 685 5 3
HELIX 38 38 THR DI 668 HIS I 686 1 z1

Figure 2.10:Secondary structure section.The secondary section of the PDB file for
chain B of hemoglobin is presented.

Thecoordinate sectioms the most important part for our experiments. Here theethre
dimensional coordinates for each atom of the protein siracare listed, as well as the
sequence numbers for every chain (See Figure 2.11). Ndtatetlie sequence number
does not necessarily start by one and can contain charastevsll, e.g. 1A, 1B.
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ATON 1071 M VAL B 144 -15.723 11.0z4 11.4%4 1.00 49.45 I
ATON 1072 Ch WAL B 144 -14.6953 11.472 12.455 1.00 50.32 C
ATON 1073 VAL B 144 -14.545 1z.971 12.8544 1.00 50.87 C
ATON 1074 O VAL B 144 -15.837 13.708% 12.440 1.00 51.58 o}
ATON 1075 CE VAL B 144 -13.286 11.04% 11.597%75 1.00 50.45 C
ATON 1076 CG1 WAL B 144 -12.938 11.593 10.592 1.00 51.41 C
ATON 1077 CGE VAL B 144 -la.220 11.387 13.036 1.00 50.855 C
ATON i0vs M HIZ B 145 -13.817 13.367 13.663 1.00 45.24 o)
ATOM 1075 Ci HIZ B 145 -14.021 14.764 14.064 1.00 47.65 C
ATON 100 HIZ B 145 -13.197 15.725 13.272 1.00 44.40 C
ATOM o051 O HIZ B 145 -iz.114 1e.232 13.570 1.00 45.43 o]
ATON 1082 CE HIS B 145 -14.027 14.959 15.607 1.00 54.64 C
ATOM 1083 C3 HIS B 145 -15.414 14.466 16,058 1.00 59,18 C
ATON 1084 ND1 HIS B 145 -16.60% 14.515 15.3%5 1.00 &0.5%9 I
ATON 1085 CDE HIZ B 145 —-15.748 13.630 17.097 1.00 &0.06 C
ATON 1086 CE1 HIS B 145 -17.61% 14.231 16.044 1.00 61.31 C
ATON 1087 NEZ HIS B 145 -17.130 13.502 17.055 1.00 &1.18 o)

Figure 2.11:Coordinate section.A snapshot of the coordinate section of the PDB file
for chain B of hemoglobin is presented. Tég coordinates of Valine (Val) and Histidine
(His) are: (-14.698,11.472,12.455) and (-14.021,14140864). They have the sequence
numbers 144 and 145 on chain B of hemoglobin.

Each atom has a number. The-atom is denoted by CA. Notice, that the hydrogen
atom is not listed, since it is too small to be measured. Rrat@ordinates are measured
in Angstroms (1°). Ten billion Angstroms equal one meter:

1A4° =107 "m.

14



Chapter 3

Protein Classification

The basic approach of biologists in describing the natute isse some kind of classi-
fication hierarchy. Similar objects are grouped at diffederel of detail. For example,
human beings, are bipedal primates belonging to the maramapecies Homo sapiens
under the family Hominidae (the great apes). A similar dfacsgion hierarchy is applied
on protein structures.

For protein classification the most popular three hiera<lare: SCOP [20], CATH
[21] and DALI/FSSP [12]. SCOP is a protein database labeledusyan experts, while
CATH uses automatic tools before processing the classditadisk to experts. The clas-
sification is performed completely automatically by DALFEP.

In the first section the hierarchies defined as by SCOP and by G&€&Hbresented.
In the second section the principle of automatic classiboais explained. In the third
section, the complexity of the different approaches isutised.

3.1 Manual Classification

Presently there are three main protein databases for pistteicture classification: Those
are SCOP, CATH and FSSP/DALI. While SCOP and CATH rely on expeits@p the
FFSP/DALI classification was generated automatically withdistance matrix alignment
(DALI) algorithm. The methods used by DALI will be introduten the next chapter,
while we will have a closer look on the classifying schemeSG0OP and CATH in this
section.

3.1.1 SCOP

In the SCOP (Structural Classification of Proteins) database publishei®95, all pro-
teins of known structure are ordered according to theirwiaiary and structural re-
lationship. The protein domains are hierarchically gralpgo families, superfamilies,
folds and classes (See Figure 3.1). The last update of thertiyy dates from October
2004.

http://scop.mrc-Imb.cam.ac.uk/scop/
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CHAPTER 3. PROTEIN CLASSIFICATION

superfamilies
2845 families
| 70859 Domains |

25973 PDB Entries (1 Oct 2004)

Figure 3.1:SCOP classification hierarchy.Protein domains are grouped into families,
superfamilies, folds and classes.

The basic unit in SCOP is a protein domain. The domain is edh@onomer or a
part of a protein and it should reflect a structure that didcheinge throughout evolution.
Since this definition is very hard to measure by an algoritB@0OP solely relies on visual
inspection by experts.

Each domain can be addressed either by a unique integed)sanby a concise
classification string (sccs). For example, the protein i PDB identity 1dIr has the
sunid 34906 and the sccs 'c.71.1.1’, where 'c’ stands forctass, '71’ the fold, "1’ the
superfamily and the last "1’ for the family. In the 'dir.desop.txt’ file the sunid and the
sccs for each domain and English names for proteins, fansigperfamilies, folds and
classes are listed. Also the sequence number where the mamtie chain starts and
ends is contained in this file.

A family consists of proteins which either have residue identitiess 80% or have
similar structure or function. Globins and Triosephosphstmerase (TIM) are examples
of protein families.

A superfamilyconsists of proteins with lower th&0% sequential identity and a prob-
able common evolutionary origin. Examples for superfagsikre Actin-crosslinking pro-
teins.

A fold contains proteins having the same major secondary steginrthe same ar-
rangement with the same topological connections. The nmbstesting members of a
fold are those with low sequential similarity where theresexan evolutionary link to the
other proteins of the fold.

A classcontains folds with similar secondary structure and is tlestngeneral way
of defining a protein structure. Table 3.1 shows the distigiouof folds over the seven
classes.

| SCOP Class | number of folds|
All alpha-helices 218
All beta-strands 144

Alpha-helices and beta-strands dispersed (a/b) 136
Alpha-helices and beta-strands segregated (a+b) 279

Multi-domain proteins 46
Membrane and cell surface proteins 47
Small proteins 75

Table 3.1: The SCOP distribution of folds into classes as itoer 2004.
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CHAPTER 3. PROTEIN CLASSIFICATION

3.1.2 CATH

The CATH (Class Architecture Topology Homology) databasdiphied in 1997 classi-
fies protein domains semi-automatically into class (C-lgethitecture (A-level), topol-
ogy (T-level) and homologous superfamily (H-level). Thetdbution of CATH domains
into the four levels of hierarchy is presented in Figure J.Be. last update from the
database was in May 2006.

Class:4 .
‘g ma'”'y LEia / alpha-beta
malnly alpha f =t

Archltecture: 40 \..
low secondary-

structure content

Topology: 1110

Homology: 2147

# CATH entries: 20,937

Figure 3.2: CATH classification hierarchy. The protein domains are grouped into
classes, architectures, topologies and homologies.

All the classification is performed on individual proteinrdains: Note that these do-
mains differ from domains as defined by SCOP. The domains direedeusing a combi-
nation of automatic and manual techniques.

The C-levelconsists of four protein classes determined accordingeiv fecondary
structure composition. The ’'all-alpha’ and the ’'all-betdass are defined as in SCOP,
while the classes ’alphatbeta’ and 'alpha/beta’ form omes<licalled 'alpha-beta’. The
fourth class consists of proteins with low secondary stmgctontent.

The A-levelcontains protein domains with overall shape similarityoigng however
the connectivity between the secondary structures. T ie assigned manually.

At the T-Levelthe connectivity of the secondary structures is considasadell. The
connectivity is computed with the help of structure comgamialgorithms.

The H-level groups protein domains that are supposed to have an evaunyi@on-
nection. This is determined either using the SSAP algorifhaylor and Orengo, 1989)
or if the domains share high sequential similarity.

3.2 Automatic Classification

The goal of this approach is to perform the protein clasgioaautomatically and to
compare these classification results with the results étbby experts. The state-of-the-
art automatic classification methods are introduced in &x chapter.
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Automatic classification methods try to find a concise regmétion of the protein
structure, e.g. by a matrix or a feature vector. In order ingare these representations,
a distance measure has to be introduced. Based on the distaasere the classification
is performed using a classifier.

The simplest classifier in pattern recognition is the Nadkesghbor classifier where
no learning is performed and no parameters have to be adjitee complex classifiers
are Neural Networks and Support Vector Machine.

3.2.1 Nearest Neighbor Classifier

The representations are compared using a distance me@sweeould think of differ-
ent distance measures (See Chapter 5), but for the begirrerigltnorm oManhattan
Distanceis used:

Ix —yll, =d(x,y) = > |x —yil,
=0
wherex,y € R".

The distance between the representation of one proteictsteuto every other struc-
ture is computed. These distances are sorted in ascendieg dihe structure with the
smallest distance to the query structure has the highedtasiynto the query structure.
The query structure is thus assigned to the class of itsés¢aeighbor’.

3.3 Complexity Considerations

The complexity of protein classification depends on theasizbe samples to be classified
and the number of these samples. For example, a protein eladd S proteins requires
N - (N — 1)/2 protein-protein comparisons. Human experts are not enifugte wants
to classify a database consisting of 40,000 protein strastut needs years of experience
in order to classify protein structures just by looking arthand the memory data space
is enormous. An objective and reproducible classificati@asare is not guaranteed this
way.

The computational complexity of the automatic methodssfiydepends on the size
of the protein structure representation and the compansethod. If the representation
for each structure has the same slZethan the comparison can be performedifiv? -
M) by using a distance measure which can be computed in limaar fihis methods are
calledStructural Fingerprintmethods. If the representation of a structure depends on the
number ofC,, atoms, the comparison can be performed only after solvirgpéimization
problem between two structures of different size. In theeapproach the complexity of
this optimization problem is NP-hard. However, speciabalhms exist which can solve
the problem in polynomial time. This is the truth faignmentmethods.
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Chapter 4

State of the Art

Usually, protein structures are compared usiiggnment which is very expensive for
large protein databases. The most cited thkBgnment Methods$or protein structures
are RMSD, DALI [11] and the Contact Map Overlap [18] approachthle first section,
the three approaches are explained in detail.

As opposed to alignment techniques there are methods uShgetural Fingerprint
to describe the protein structure. These methods still thekexperts’ approval since
their quality has not yet reached the quality of the alignhagproach. However, their
computational time is very low and the classification resalte still improving. In the
second section, these methods are explained in detail.

4.1 Alignment

Alignment methods try to find a pairing of amino acids betwega protein structures.
One of the first methods for protein structure comparison tod#x one of the protein

structures and to rotate and translate the second strueduaeigid body to minimize its
Root Mean Square Distance (RMSD) from the first structure. Thetmsed automatic
classification server DALI/FSSP computes a similarity scimr two protein structures
with the distance matrix alignment algorithm introducedHgilm and Sander [11]. The
Contact Map Overlap (CMO) approach uses contact maps to esyrgee distances be-
tween protein structures. The alignment of contact maps SRrhard problem.

41.1 RMSD

A protein conformation is a set of vectors (the 3D coordinates of its atoms), where
eachr,, has three components. The difference between two proteifogoations can be
computed through the difference of the two sets of vectqrandy,. Note that the two
vector sets must have the same size.

Before the difference is computed, the center-of-masg, &ndz,, is shifted to the
origin of the coordinates, so that translation can be négied hen the difference can be
captured by the square distance:
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EU) = Z |20 — Uyn|27
where U is an orthogonal rotation matrix.
The RMSD is then defined by:

RMSD = 1 Emin),
n

whereU,,;, is the rotation matrix which induces the smallest distane®svben the
two structures.

The classic paper of Wolfgang Kabsch [15] showed how to mirenk’ to get the
RMSD using Lagrange multipliers and Singular Value Decoritjzos

However, the RMSD only works well as an indicator of struckwiailarity if the
structures are closely related and structures with saneeasez compared. Also, RMSD
can not manage 'outliers’, single atoms which have a largeadce to the rest of the
structure.

4.1.2 DALI/FSSP

The DALI algorithm tries to align distance matrices. A dista matrix is defined by:

D; ;= d(i, j),

whered(i, 7) is the Euclidean distance between tfig atoms of theith and thejth
amino acid on the protein chain. Usually, the distance medrare depicted using gray
scale images, where black indicates the distance zero amdyipresent at the diagonal.
Figure 4.1 shows the distance matrix of lash.

Ry F

Figure 4.1 Distance matrix. The cartoon and the distance matrix of the protein structure
lash. In the distance matrix tlig,-C,, distances are represented as gray values.

How should one compare two distance matrices? The simphasde slide one (trans-
parent) matrix over the other and detect similar submatri€hkis idea implies a combina-
torial optimization problem of merging corresponding dansubmatrices to larger blocks

20



CHAPTER 4. STATE OF THE ART

of agreement by removing redundant rows and columns. Theisolof this optimiza-
tion problem is computed with the Monte Carlo method. In tred-ind-error method the
structurally similar regions are found by defining a cutaffi¢tion on the intramolecu-
lar distances between two detected submatrices. The dshié alignment is typically
reported as an equivalent set of amino acids and visualzed3® super-imposition.

Since algorithms of the alignment of two structures havenb@®wn for a long time,
the main contribution of DALI was to apply alignment on ladgga sets in order to com-
pute automatically a complete map of the protein universsdd the alignment algorithm
should not only compare two structures but induce a glolmailaiity measure between
the two. This similarity measure is defined by:

DB * o
) ] (e P SR &

where the summation is over all amino acids of the common, etjyedenotes the
arithmetic mean of the', — C, distancesif‘j anddf; of the proteins A and B, a relative
deviation of 0.2 is the threshold of similarity and the expwinal factor downweights
contribution from parts at longer distances. The optinralcdtiral alignment is that set of
equivalencesi”, %) that maximizess.

The DALI algorithm performs two steps for searching in ladgabases. In the first
step a fast algorithm is used to compute a group of potentralasity candidates. In the
second step, a refinement is performed on the set of the piestep using slow but more
sophisticated algorithms.

In the first step, the proteins are represented by the meahsiokecondary structure
elements (SSE). Thus, every SSE is represented as a 3D ak@apatial position. A
lookup table is then used to represent the protein’s stracivhen a structural query
is performed on a protein database, the lookup table is usegitkly determine the
candidates for similarity. The secondary structures ofigaotein of this set of candidates
are then further aligned with the query structure by dyngmagramming.

In the second step, a branch-and-bound algorithm is useohtpare the”', coordi-
nates rather than only the secondary structures thus érpgldhe whole space of possi-
ble structure-structure alignments. Since the searchespaery large, this step requires
much more computation time. In order to reduce the computditne of the branch-and-
bound algorithm, the protein structures are decomposddritssmaller compact units
and then the correspondence problem for the smaller maig®lved.

Since the protein structures are too large, they are cutdatoains. Protein chains
are decomposed into domains using the criteria of recuerand compactness [12]. In
the "Dali domain dictionary” each domain is assigned a donwéssification number
DC_l_m_n_p representing:

1. afold space attractor regiob,(
2. aglobular folding topologyr(),

3. afunctional family ¢) and
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4. a sequence familyy.

The finest level of classification isvel pand the highest level of the fold classification
corresponds ttevel . The most evolutionary interesting part of the DALI clagsifion
hierarchy islevel m The globular folding topology defines the fold type. Folgdg are
defined as clusters of structural neighbors in fold spack awerage pairwise Z-scores
above 2. The mean and standard deviations of similarityescowere calibrated against
pairwise all-on-all comparisons in a database of 220 pneteas a function of protein
size. Shape similarity quantified with the distance matamparison scores can then be
expressed in terms of normalized Z scores that is, standaidttbns above the mean.

4.1.3 Contact Map Overlap

A contact map is a concise representation of a protein’s@#itree-dimensional structure.
It is specified by a matriX’, with entries indexed by pairs of protein residues:

o 1 if residuei and;j are in contact,
710 otherwise.

Residues and; are said to be in contact if they lie withiR Angstroms from each
other in the protein’s native foldz is called the threshold of the contact map. In the Fig-
ures 4.2 and 4.3, two protein structures and their contapsraee depicted. The contact
between two amino acids corresponds either to a non-zeu \adlthe matrix or to an
edge in the graph representation.

The contact maps are a simplification of the distance matiiteoduced in the pre-
vious section. In fact, a contact map is a distance matrixkwhontains only the valués
or 1 depending on the threshold

Rather than representing contact maps as matrices, thessualy represented as
undirected graph& = (V, E). The vertices of the graph represent the amino acids, while
the edges are the contacts between two amino acids.

The goal of the alignment is to find correspondences betweeertdpoints of contacts
in the first map and the amino acids that are also in contadténsecond map. The
number of these correspondences is called the overlapginmé-4.4, the alignment of the
two contact maps from the Figures 4.2 and 4.3 is presentesl alipnment of the two
contact maps matches the vertices of the first graph to thieeeof the second graph.
The mappings (in blue) do not cross, since the order of thigcesrneeds to be preserved.

In graph theoretic language: Two undirected gra@hs= (V1, £1) andG, = (Vs, Es)
are given, wherey; = |V;| is the number of vertices and, = |E;| is the number of
edges fori = 1,2. A total order is defined o} = {a; < ... < a,,} andVy = {b; <

. < by, }. A non-crossing mapf V; in V; is defined by any two subsets of the same
sizek anda;, <..<a;, € Vi andb,, < .. <b, C Vi The indicesi;, andu, are
ordered according to their value angl is the image of,,. Two edgega;, a;) € £, and
(by,b,) € E, aresharedby the map if there arét < k such thatw; = a;, , a; = a,,

b, = b,, andb, = b,,.
The goal of the alignment is to find the maximal number of narssing sharings.
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Figure 4.2: The protein structure of 1lash  Figure 4.3: The protein structure of 1him
and its contact map represented as a ma- and its contact map represented as a ma-
trix and as a graph. trix and as a graph.

\

"j | / /7 NN b/ \
NN \\\\ \‘ \ \
\‘\ %w \ //

N\ : 7\:1 ~

Figure 4.4.Contact map alignment.The contact maps of the protein structures 1ash and
1him are aligned with the CMO algorithm by Lancia et. al. Piettrom [18].

Lancia et al. [18] found an optimal way to align contact mapprotein structures
using Integer Programming (IP). IP is a technique to solteropation problems defined
as linear functions with integer variables. First the cotwaap overlap problem is reduced
to the Maximum Independent Se(MIS) problem. This problem can be defined as an IP
problem with the binary variable,:

max E Ty

Uevupti'mal

with
x, + z, < 1forall edges{u,v} € FE

lindependent set = a set of vertices such that there is no egedn any two of them.
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We definer,, for an edger; = {a,b} € E anda,b € V as:

1 ifue Ei;
Ty = .
0 otherwise.

The search space of the problem is exponential, since foaplGwrithn vertices the
search space 19(2")

Then IP is applied on this optimization problem using a Braact-Cut algorithm to
solve the set of equations. The lower bounds are defined l®yadweuristics, while the
upper bounds are found by linear programming relaxatiomhith the variables are not
restricted to integers and thus the computation time isrgmtyial. The cuts are mainly
cligue-inequalities.

An example of a clique-inequality is:

maxz% <1,

vEQR

which says that any cliqu@ can have at most one vertex in common with any independent
set. Finding more clique-inequalities can further redineedomplexity of the problem.

For reducing the CMO problem to the MIS problem and its ovéRafbrmulation, the
reader is referred to [18].

4.2 Structural Fingerprints

These methods do not compute an alignment between twowtegcRather they try to
find a structural fingerprint of the proteins. However, thiskgem is not the same like
describing and finding human fingerprints in a large datghalsere only an exact match
is of interest. The protein fingerprint should on the one radagtribe the protein structure
as good as possible. On the other hand, it should leave spaskght modifications of
the basic structure. Thus, similar proteins can be rettiénem a large database.

Since no alignment is performed, these methods are veryltastProbability of Iden-
tity (PRIDE)[4] method uses a set of histograms to descrilbl peotein. The Gauss Inte-
gral approach used by Rogen and Fain [26] describes a praekibbne (= the polygonal
curve connecting it§', atoms) with the help of knot theory.

4.2.1 PRIDE

In this approach by Carugo and Pongor the distribution offhe,, distances in the
range ofn = 3, ..., 30 chain distance is used to describe the protein structureedach
protein the distance distribution which is a histogram isnpated forC, — C,, pairs
with a distance of. on the chain. In Figure 4.5 the histogramsiof,,,, distances for
n = 8,15, 22,29 are shown.

Hence we get 28 distance histograms associated with onampsttucture. These dis-
tance histograms are then compared pairwise for two pretaictures using contingency
table analysis.
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Figure 4.5:PRIDE distance histograms.The D, ;,, distance histograms for n = 8, 15,
22, 29 as computed by PRIDE. Rather than computing one histogfahe distance
matrix D, ;, several distance matrices ©f, atoms with the distance are computed. The
x-axis scales the distances it and they-axis denotes the percentage of observations
found in one bin. Image from [4].

This analysis answers the question: Is their a dependerteyebe structure 1 and
structure 2? The contingency table for two protein striechustograms is shown in Table
4.1.

Binl|Bin2|..|Binm| Total
Structure 1| Oy, Oia | ...| O R,
Structure 2| Oy Ogy | ... | Ogpy Rs
Total 4 Cy | ...| C, n

Table 4.1:.Contingency table.The contingency table constructed of two histograms with
m bins.

The expected value for the observation is:

Cij = 7
where R; is the total sum of théth row, C; is the total sum of thgth column and»
is the total number of samples. The chi-square test statigtj used by PRIDE is then

computed by:

T C 2
¢=33 (an—eﬂ)
i=1 j=1 R
wherer andc are the number of rows and columns of the contingency tableectively.
The observed number of responses in the cell indewd columry is O;;.
The PRIDE score is the arithmetic average of they2&alues. It ranges between 0
and 1, where 1 implies the maximum dependency between thsttuctures.
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In order to perform the contingency table analysis, the binthe histograms of the
two structures are combined so that at least 5% of the oldsamsaare included in each
bin.

4.2.2 Gauss Integrals

Rogen et al. compute a set of 29 writhe-based features as=bevéh the protein back-
bone structure. The backbone can be parametrized by a pwlygarvey (See Figure
4.6).

Figure 4.6:Polygonal representation of theC,, trace. The structure of the protein is
described as a connected linear trace ofjfsatoms.

The writhe of a closed space curyean be computed by using the Gauss Integral:

1
LL T(’y) = —// Ld(tl,tg)dtldtg,
Am 7x\D

where
[V (t1), () — (t2), Y (t2)]
y(t1) = v(t2) |’
D is the diagonal ofy x v and[+/(t1), v(t1) — v(t2),~/(t2)] is the triple scalar product.
Thetriple scalar productfor three vectors, b, c is defined by:

w(tl,tQ) = dtldtg

[a,b,c]=a- (b xc)

The writhe can be described as the average number of cress#eg when looking at
the structure from all directions of the 3D-space.
For a polygonal curve the integral is reduced to a sum:

WT(M) = I(1,2) (M) = Z W(ilv i2)7

1<ig<ig<N

whereWV (iy, i5) is the contribution to the writhe coming from thigh andi,th line seg-
ment. The concrete computationldf is explained in [25].
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28 more writhe-based descriptors are constructed by tabsglute values and look-
ing only at certain interesting configurations such as in:

[\1,2\(,“) = Z [W (iy,42)]|

1<i1<ia<N
Ipaj2a)(p) = Z \W (i1, 13)| W (iz, ia)
1<iy <io<izg<ig<N
and
las)aee () = >, W (i1, i5) W (i2, ia) W (i3, 76 ).

1< <i2<ig3 <i4<i5<tg <IN
The number of structural descriptors is 30 since the numbéf,atoms is also one
of the descriptors.

4.3 Discussion

The alignment methods have a very high time complexity fol.Dand the CMO. If
the size of the protein databaseNsand the average size of a proteinlis, than the
complexity of the alignment algorithmsd$( N2 - M?). Further there are limitations to the
size of the data set considered for CMO: Not more than 300tsies can be compared.

The structural finger print methods are very fast, howevey tack to describe the
protein structure in detail.

This motivates the new approach: We want to find a precise #hectige representa-
tion of the protein’s structure. It should have the precisid the alignment methods and
the time requirements of the structural fingerprint methods
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Chapter 5

Structural Fingerprints by the use of GI

Here, a new method for protein structure classification dase structural features is
presented. The idea of the structural fingerprint methotidl®ved, so the central topic
of this thesis is to find a concise representation of the prasteucture. This representation
is obtained byGroup Integralg(Gl).

In the first section, the feature extraction for protein ctoe representation by Gl is
introduced. Gl are extended I8pherical Harmonic§SH) andD-Wigner Matrixexpan-
sion to keep more structural information back.

In the second section, the feature selection algorithms REland SIMBA are intro-
duced. They should help to extract the relevant features.

In the third section different distance measures for feaugctors are considered.
Also, a simple domain partitioning algorithm is introdua#diding a protein into several
domains. Finally, several distance measures for vectsrasetpresented.

In the fourth section algorithms for computing the new mdthce presented.

5.1 Feature Extraction

In pattern recognition features play an important role h# extracted features are not
relevant for describing the object, then no other technigileimprove the classifica-
tion results. Therefore, we are interested in thoroughbcdbing the structural features
of proteins. For this reason we examined the protein stradtudetail in the previous
chapter.

We want to find a translation and rotation invariant représtén of protein tertiary
structures in order to compare them. In [34], histogramweed to describe the distribu-
tion of distances and angles occurring in the structure abtem (= its 3D coordinates).
These histograms are invariant to rotation and translaioce only the frequency of the
occurrence of inter-atomic distances and angles is comegidend not the actual atom
coordinates. Since histograms could be described as Glya gemeral invariant can be
defined.

The 3D structure of the protein in Figure 5.1 is described bgtaf invariant features.
Invariance for the Euclidean group of motion is considehedrder to obtain translational
and rotational invariance, Gl are computed. Later, Gl atereded by SH since more
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Figure 5.1:Euclidean motion of protein structure in 3D. The protein structure with
the PDB identity 1GPE is depicted as a cartoon in 3D spacerdlagve position of the
structure to the origin of the coordinate axis is defined kytthnslational vectot and
the rotational angleg, # and around ther, y andz axis respectively.

rotational information can be kept in this way. Even moreadetl shape description can
be achieved byp-Wigner matricesHere, a trade-off between computational cost and the
level of detail has to be made depending on the applicatregsirements.

5.1.1 Invariant Features

In mathematics, given a s& and an equivalence relation on X, the equivalence class
of an elemenk in X is the subset of all elements X which are equivalent ta:

la] = {x € X|x ~ a}

The equivalence relation is reflexive & ~ a), symmetric & ~ b = b ~ a) and
transitve @ ~bAb ~c= a~c).
An equivalence relation on a groﬁpcan be defined by:

G
x1~x2<:>ﬂg€ng1:x2

In order to obtain invariant features, we need to find a mappsuch thaf is able to
extract the intrinsic features of an object. All the repregaives of one equivalence class
should be mapped into one point of the feature spade biis could be expressed by the
following formula:

X1 ’g Xo = I(Xl) = I(Xz).
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There are three canonical possibilities to obtain invasiaNormalization the Dif-
ferential Approachand Integration Normalization techniques utilize extreme points on
orbits and normalize the object with respect to these. Bowescriptors, for example,
normalize the objects with respect to the main axes of thesels. The Differential ap-
proach considers invariant features obtained by solvimggbaifferential equations (Lie
theory). This approach is suitable only if the parameteiissstmall and the solution for
the resulting differential equations is easy to find. Thednal Approach assumes that
the equivalence class of an objectorms an orbit in the object space parametrizec\by
The idea is to average arbitrary functions evaluated on ithi¢ @Haar Integrals). A good
overview of invariant theory and especially of the Integmaiapproach used in this work
is presented in [3].

Group Integrations the name for a class of methods which compute invariatirfes
for a transformation group. Invariance is achieved by sumgnuip all possible positions
a signal can take under a certain transformation group. thuhdilly, a non linear ker-
nel functionk should be applied to every transformation of the signal geoto obtain
separable features.

In general, an invariant feature obtained by Group Intégnas defined by:

I(x) = /Gk(gx) dg (5.1)

Here, g stands for a group element of the transformation gréupnd acts on the
signalx. The kernel functiort is evaluated for each group transformation of the signal
The quality of the invariant depends on the kernel function

Usually, the kernel functions are monoms which take intaoant a certain neigh-
borhood of the signal in order to describe local featurespécml feature of the Haar
Integrals is their robustness towards small perturbatajribe signal. The disadvantage
of Haar-Integrals is their high computational cost: Fortepoint of the signal and each
possible transform, the kernel function needs to be evediiat

Gl stands in contrast to Normalization techniques, whidaiokinvariance by comput-
ing features relative to a global reference frame. The detetion of the reference frame
makes Normalization techniques extremely sensitive teegyavhereas Gl is known to be
very robust to many kinds of noise.

At the Chair for Pattern Recognition and Image Processingyessity of Freiburg,
Gl techniques were already used for different applicatitamsdonk [8, 9] applied Gl to
character recognition and joined the Gl-framework withr&+techniques. Ronneberger
etal [27, 28] used Gl for the classification of Pollen graind aegmentation of cell nuclei.
In [29, 32, 30] Gl was successfully applied to texture-dfasstion and image retrieval.

Group Integrals for 3D structures

In this section, we introduce Gl for 3D objects. Later, wd extend the model to describe
proteins. In general, a 3D objextcould be defined using the following function:

x:RP—R
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The domain of the function is the volume of the 3D objecFor intensity objects could
be defined as the coloring function for the object, where Hieesofx is the gray value.

Consider eq. (5.1): If7 is the Euclidean groug andx is an object in 3D space, then
g € £ acts onx by:

(9x) (n) := x(R"n — t)

The action of the group on a point of the objectx could be parameterized by the
translational vectot and the rotational angles v andd. For example, if we have a point
n in three dimensional space, than its Euclidean motion totpdicould be described by
the formula:

n=Rn+t
If we denotecos a by ¢, andsin a by s, the formula above could be rewritten to:

1 0 O co 0 sp cy —Sy 0 to
Il/ = 0 C¢ —S¢ 0 1 0 Sw C¢ 0 n -+ tl
0 S¢ C¢ —Sp 0 Cop 0 0 1 t2

The anglesp, 0 and+ describe the rotation around they and =z axis respectively
(see Figure 5.1).

Typical choices for the kernel functiohin eq. (5.1) aréi(x) = x(0) - x(d). Here
the value of a reference poir{0) and another point of the objeg{d) at distancel is
considered. Further kernels could be constructed(y = h,(x(0)) - h1(x(d)), where
hi andh, are some arbitrary nonlinear functions.

Choosing the kernel

In order to compute the Gl in eq. (5.1), a suitable kernel fiomcshould be found. On the
one hand, the kernel function should have a high discrinangtower for the different
object classes. On the other hand it should be flexible entudbscribe all objects that
belong to one class.

In this application, the protein structure is viewed as amatloud (See Figure 5.2).
The interesting parts of this structure are regions of highety. These regions can be
described by using the gradienitz. This leads to the following kernel choice:

kq(x,Vz) = hi(Vz(0)) - ha(Va(d)),

whered is the width parameter of the kernel function. The functibnandh, should be
direction specific to keep the relative directions of thedggats. If the gradient is large, a
strong feedback is desired. The simplest idea is to choose:

hy(v) = [v"n

Y

wheren is some fixed unit vector. The function above is not able tadi#ewhether it
has to deal with a large disoriented or a small oriented grdadi Thus, a more rational
choice forh,, is:
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UTTL
whered, (y) = 6(y—x) andd is Dirac’s delta function. It gives contribution to the igtal
only if z —y = 0.

Thush,(v) is unequal to zero wheneverandv are parallel or antiparallel. The kernel
function suggested is therefore:

Kann (2) = ho(V(0)) - by (V(d)), (5.3)

Spherical Harmonics

Spherical Harmonics are a powerful tool to describe the wégtions act on a spherical
function. Spherical harmonic$;" (¢, ), are single-valued, smooth (infinitely differen-
tiable), complex functions of two variableg,and, indexed by two integerg,andm.

In quantum physics terminology,s the angular quantum number amdthe azimuthal
guantum number. Roughly speakirigyives the number of local minima of the function
and therefore represents a spatial frequency.

Spherical harmonics form an orthonormal basis of a vectacs@analogue to Fourier
coefficients. In the same way that Fourier coefficients cteldised to describe the spec-
trum of an image, expansion coefficients based on Spheriaahbhics can be used to
describe functions defined on a sphere. Any square-integhaiction of¢ ands> on the
two-spherée can be expanded as follows:

00 l
£(6,0) =Y > alYi(e,0). (5.4)

=0 m=—1

Depending on the cutoff parameteerrors are introduced to the representatiofi. of

In order to compute the spherical harmonigs; (¢, ¢), associatedlegendre polyno-
mials P/ and P, are necessary witm = 0, 1, ..., [. The associated Legendre polyno-
mials are solutions to the associatestjendre differentiabquation for € N andx € R:

(1 -2y =22y +1(1+1)y=0
The P/™ are given by:

(_1)m 2\m/2 e
1 (1—x ) drl+m

For negative associated Legendre polynomi&is' are defined by:

P'a) = (a? - 1)

P () = (—ym L=

(I4+m) !

LAll the points(z, y, z) such that(z — 2¢)% + (y — y0)? + (2 — 20)? = %, where(zo, yo, 20) is the
center of the sphere andts radius.
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The first four associated Legendre polynomials are:
1
Py(x) =1, P)(z) = x, Pl(x) = —1(1 —a*)'/?, P)(x) = 532" —1).

For a definition of the associated Legendre polynomials arttiér properties see [2].
TheY,"(¢,1) are computed by:

—m)! .
Y (p,0) = \/Ql;T 1 8 " mi! - P™(cos ¢) ety (5.5)

The expansion coefficients] , can be obtained by multiplying eq. (5.4) by the com-
plex spherical harmonics and integrating over the solideafig

ol = / F(6,0)Yi5 (6, 0)d2
S2

The energ@ﬁn:_l ]afn|2 of the coefficients:., is invariant to rotations of the under-

lying object. The key idea is that the amount of ene@&}l |alm\2 a functionf contains
at different frequencies does not change.

D-Wigner Expansion

A real functionf(g) : SO; — R defined on the rotation group can be orthogonally
expanded in terms of D-Wigner matrices:

F9) =D > > bl (Dhi(9)),

=0 m=—Ilm/=-1
where thé'! are expansion matrices obtained by the projections on tbis hmctions:

20+ 1
872

(D!, . )

l _
Oy =

The scalar produgtx, x’) is defined by:

(x, %) = / L X0

wherex* denotes the conjugate transposexof

Hence, we are able to use the projections to keep more infmmiaack in our group
integration framework. Instead of a simple integrationrdkie rotation group we compute
projections on the D-Wigner matrices.

Since the D-Wigner matrices are unitary representationh@frotation group one
can show that the norms of the columns of thare invariant to right multiplications
f(R) — f(RR’) and similar the norms of the rows of theeare invariant to left multipli-
cations. Hence we can obtain invariance by taking the norfntiseocolumns or rows of
the expansion matrices, respectively.
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Further, the Spherical Harmonics coefficiemtsshow a nice transformation behavior:
If £(¢, ) is rotated by some matrik, then the:!,, are transformed by a D-Wigner matrix
D;(R) such that:

An introduction to D-Wigner matrices is given in [19].

5.1.2 Application for Proteins

A 3D model of the protein shape is constructed by considerimigthe 3D coordinates of
the atoms forming a protein structure. In Figure 5.2, a tgigacotein structure is shown.

Figure 5.2:Atom cloud. Only theC,, atoms of the protein with the PDB identity 1GPE
are plotted. The arrows indicate the gradient at edghatom. In Figure 5.1, the same
protein is plotted as a cartoon.

In order to include directional information for each atohe gradient ofe, Vx(r), is
defined. By using theé function only the gradient fof’,, locationsu; is defined.

2 _ urujH 2
Ux(r) = D 0u(r) 5D (wi—uy) e (5.6)
{ J
W@z‘)
= Zé Y Vx(u;), (5.7)

whereu; are the point coordinates and the indicesd; range over the whole point
set. They are chosen according to the sequence numbers amihe acids. Thus, the
gradient in point r is influenced by the distance to all oth@nfs of the protein structure.
In other words, the gradient is the orientation of one atonwespect to all the other
atoms of the structure.
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Group Integrals for Proteins

The kernel introduced in eq. (5.3) contains three vectonadlparameters, d andn’'.
Their configuration is shown in Figure 5.3. Two atoms of a @irostructure are consid-
ered having the orientatianin A1, n’ in A2 and the Euclidean distande

Figure 5.3Configuration of n, n’ and d. Two atomsA1 and A2 of the protein are consid-
ered. Their configuration could be uniquely defined by thapeter sell = {«, 5, v, A}
constructed of the vectors d andn’'.

Using three pair-wise dot products and the absolute valtiesodlistancel, we define
the parameter sét = {«, 5, v, A}:

n’ . d
a = —— (5.8)
|d|
n/T-d
B = — (5.9)
|d|
v = ntn (5.10)
A = |d. (5.11)

Now we want to solve the group integral:

In(x) = /gk‘dvn’n/(gx) dg (5.12)

_ /g h (V5 (0)) - hor (gVx(d)) dg (5.13)

_ / / ha(RVX(1)) - hy (RVx(u+ RTd)) dR du ~ (5.14)
R3 J O3

In eq.(5.14) the Euclidean group is represented by the latmis « and a rotation
matrix 2. The points are transformed by an arbitrary orthogonalimdtrc R3*?. The
rotation matrix has three degrees of freedom (rotationradauy andz axes). Inh,,, the
distanced is rotated byR” beforeVz(u + R”d) is transformed byR. This is due to the
fact that we want to conserve the relative directio ¢d the pointu.

The second kernel factar, (RVz(u + RTd)) is substituted with the help of the rela-
tion:
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So, we obtain:
B (RVz(u + RTd)) = / ho (RV (W) - 6 (u + RTd) du’
R3

and substitute the result to eq. (5.14):

In(z) = /R6/0 ho(RVZ (1)) - hy (RVZ(W)) - 6 (u + RTd)., (5.15)

Now we have to consider the functiong more closely. According to eq.(5.2),,
has a non-zero value onlyif andv are parallel or anti-parallel. From this fact, it can be
concluded, that the integrand &f(x) differs from zero only if the following conditions
hold:

n || RVz(u) (5.16)
n' || RVax(u) (5.17)
d || (u—1u) (5.18)
ld| = |u—u| (5.19)

The first three conditions are fulfillediif, n" andd have the same configuration up to
rotation asvVz(u), Va(u') andu — v’
We can now rewrite the eq. (5.15) to:

Iy = / Onmra - Oa(Ju—u|) - |Va(u)] - |[Va(u')| dudu' dR, (5.20)
R6

Hered, , 4 is a configuration specific function. In eq.(5.9-5.11), weehaniquely
defined the configuration of, n" andd by «, 3, v andJ.

Now, the definition of the gradieWz(r) of eq. (5.7) is inserted into the integral of
e(.(5.20). The integral reduces to a sum:

In =Y Onwa 0allui — ) - [Va(uw)| - [Va(u)l, (5.21)
i,k

The result of the computation is nothing else but a specsabgram: The frequency of
occurrence of two gradients in a specific distance with aqadatr relative configuration
is computed. Each bin of the three dimensional histogramessmts a particular config-
uration. For each pairwise configuration of atoms of the @mtthe appropriate bin is
updated by the produ¢Vz(u;)| - [Va(u),)|. In fact, the Gl is closely related to the Shape
distribution computed by Osada et al. [22], where a histogod the pairwise distances
of points on a 3D object surface is computed.
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Extending Gl with Spherical Harmonics

The SH transform is now applied to the Gl in eq.(5.20). Thet®gInctionoa (ju — u'|)
is evaluated. The Delta function has a none-zero value énly+ v + A - s, such that
|s| = 1ands € S2.

So we obtain the sphere integral, whem@anges over the unit-sphesé:

IH:/ / b - [Va(w)| - [Va(u+ A - s)| duds (5.22)
S22 JR3

Instead of integrating the function, we compute its praogacbnto the spherical har-
monicsY,”(s):

[gn:/ O - |Va(u)| - [Va(u+ As)| - Yy (s) du ds. (5.23)
S2 JR3

And by substituting the definition oV x(u):

B = Y o (Va(w) - (Vatun)] i, (). (5.24)
ik

|u; — g

For ! = 0, the integral has the same value as the integral in eq.(5F20) > 0
the computation is very similar to eq.(5.21). Instead ofiad¢N x(u;)| - |V (uy)| to the
histogram bin related to the configuratiinthe added value is multiplied by the complex
factor Yy, (1= ).

Each bin has now two more indices, namégndm. After computation, the results
are made invariant by computing the bandwise energy:

l
> e

m=—I

So, for example if = 1 (See Figure 5.4), we obtain two values for each multidinari
histogram bin, after computing the bandwise energy. In ggne+ 1 invariant features
are computed for each »n’, d confirmation.

Extending Gl with D-Wigner Matrices

An even more accurate way of describing the rotation gr8(y3) is using D-Wigner
matrices. The group integréj; can be rewritten to:

zﬂmzéumﬂww

The irreducible representatives 66)(3) are called D-Wigner matrices and are de-
notedD", wheredim D' = 2/ + 1. In particular,D°(R) = 1 and D*(R) = U* RU.

In order to computeD!(R), we need to find the rotatio® which transforms the
configuration of the gradient§z(u) andVz(v') and the difference vectar — v’ into
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79 N |- 10
a %ﬂém=0 In
I=1|1=1 11
m=-1m=1 In

Multidimensional
Bin I

Figure 5.4:The bandwise energy of the SHFor the binll = {«, 3, v, A} the bandwise
energy of the SH is computed. Hoe 1, two invariant features are obtained by taking the
bandwise energy.

the standard configuration of the parameters’ andd. Rather than taking the actual
parameters, n’ andd, the anglesy, 5 and¥ will be considered. So we have to solve the
equation:

RU = Z, (5.25)

whereU is a3 x 3 matrix with columns consisting of the vectads= (1,0,0)”,
n = (cos@,sina, 0) andn’ = (cos 3, sin F cos 7, sin 3 sin7), and:

. nt.d
cosa = ——
|d|
o n/T -d
cosff = ——
ST
T _
_ n—cos&ﬁ n’—cosﬁ%
cos?y = T =7
‘n—cosa%‘ n’—cosﬁ%)

The standard confirmation is depicted in Fig.5.5. The afgsthe angle between the
projection ofn ond and the projection of’ ond.
We can computé®'(R) by:

_ — -1
1 cosa@ cos (3

D'R)=R=[d,n,n]-| 0 sina sinfBcosy
0 0 sinfsin%y
Since the values ab' for [ > 0 are matrices of siz€ -1+ 1) x (21 + 1), we have
to compute the norm of each column of the matrix to obtainriave features. Thus each
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< \D\

Figure 5.5Configuration (a, #,%). The standard configuration can be described by three
angles(a@, 6,7) which are formed by the three unit vectets: andrn’. The three angles
describe uniquely the configuration of the three vectors.

configurationD' produces - (I + 2) + 1 invariant features, e.g fdr= 1 we have four
invariant features.

In [23], an explicit formula for D-Wigner matrix computatias given. The compu-
tation of D'(R) only depends on the the values Bf (R) and D'~'(R) and thus can be
computed iteratively.

Extending the kernel function

Since the protein hierarchy starts with a linear sequen@ryemino acid is associated
with a sequence number. This information should be incatearinto the kernel in eq.
(5.3). Since every’, atom belongs to one amino acid and is hence associated with a
sequence number we can define an index mapping® — R. The new kernel is:

kiti (%) = kam (@) - 6:(11(0) = I(d)]).

This formula guarantees that the coordinate-distancelmdaquence-distance between
two C,-atoms are closely related. Depending on the bin size,fare can enhance or
diminish the importance of the sequential distance.

Local Feature Extraction

In the previous section, the feature extraction for featwescribing the global shape of
proteins was introduced. Another idea would be to consiglatuires describing the local
surroundings of each atom and include this information & global description. For
each atom, only a restricted neighborhood is considered.@1is computed per ator)
wherej indicates the sequence number on the chain :

n/2
Gy = > Ou- |Va(u)l - [Va(uy)] - Y, (‘u_—uj|) ; (5.26)
i=—n/2 ! J
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wheren is the cutoff and determines the size of the considered beigjood. The
pairwise comparison of the local features of two protein®asexpensive. Therefore, a
histogram of the group integrals is computed:

N

I (q) = > 6(| I, ()| — ). (5.27)

j=1

whereN is the number of’,-atoms of the protein and:

l

ERGIEND IO

m=—I

5.2 Feature Selection

Since large feature vectors can be computed using SH exqraosD-Wigner matrices,
the question arises: Which of the features are relevant dbrathe classification pro-
cess? The goal is to eliminate the misleading features aep #e features with good
discrimination properties.

Since the labels on the training set are known, a supervigegification problem
needs to be solved. Two conceptual frameworks for featleetsen exist: thdilter model
and thewrapper modelin the filter model the selection is done in a preprocessiag s
with the help of an evaluation function. In the wrapper mdbelperformance of a specific
algorithm is optimized directly. However, the wrapper miag&ery high time consuming.
A good overview of feature selection techniques is preseint§7].

The RELIEF [16] and SIMBA [5] algorithms are filter model basgmproaches. They
were chosen because they are easy to implement and fast fwutankor a set of
T = |S]| labeled feature vectors, a weighting vectoris computed indicating which
features are relevant. Each feature vecter S has the sizéV. The vectorv contains the
relevance of each feature. Features with a weighbelow a certain threshold can be
discarded.

For the computation of the algorithms, thearest hiand thenearest misfor a feature
vectorx needs to be defined. It is assumed that the vectors are lakelee define:

nearhit(x) := argmin d(x,y)
yes
label(y)=label(x)
nearmiss(z) == argmin d(z,y).
yes

label(y)#label(x)

So the nearest neighbor to sampléom the same class is calle@arhit while the
nearest neighbor from a different class is cakledrmiss.
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5.2.1 RELIEF

The RELIEF algorithm holds a weight vector over all featurad apdates this vector
according to the sample points presented. The algorithettsefeatures which can sep-
arate neighboring samples well. The weighting veatas computed by considering the
difference of a single feature from the sampland itsnearhit andnearmiss. If these
differences are far apart from each other, than the singieife has a good separation
ability and thus should be selected. The difference withihemiss value should be as
large as possible, while the difference to therhit should be as small as possible.
The threshold- determines which features are chosen.

Algorithm 1 RELIEF
1: Initialize the weighting vectow with a zero vectorw = (0, ...,0)7.
2

s fort=1to7T do

Pick randomly an instanceof S.

for i =1to N do
w; = w; + (z; — nearmisér);)? — (z; — nearhitz);)?
8: end for
9: end for
10: Choose the feature sétjw; > 7}, wherer is the threshold.

N aRA®

RELIEF does not re-evaluate the distances according to tightweectorw. In par-
ticular, RELIEF has no mechanism for eliminating redundeatdres. Thus, the SIMBA
algorithm is also considered since it incorporates theadlyecomputed weights, while
computing new weights.

5.2.2 SIMBA

The SIMBA algorithm uses a margin based criteria to meas@euality of each feature.
The margin ofr is defined by
1 .
0p = §(Hx — nearmiss(x)

Ly = ll = nearhit(z)]l,,),

whereP is a set of points and is the weight vector. The-Norm||z||,, andw, z € R"is
defined by:

The margin measures the classifiers confidence when makidggatsion. If many sample
points have a large margin, a good generalization is gueednAn evaluation function is
defined to measure the margin induced by a set of features.
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Given a training set and a weight vectow, the evaluation function is:
e(w) =Y 0%,(x)
T€S

SIMBA first finds the weight vectow that maximizes:(w) and then uses a threshold
in order to get a feature set. A stochastic gradient ascersieid to maximize (w).

Algorithm 2 SIMBA
1: Initialize the weighting vectow by: w = (1, ..., 1)%.
2:
3 fort=1to7 do
4:  Pick randomly an instanceof S.
5. Calculatencarmiss(z) andnearhit(x) with respect to5'\ « and the weight vector

w.
6:
7. fori=1tgNdo .
S - = R
9 w=w-+A
10:  end for
11:  w «— w?/ ||w?||, where(w?); := (w;)?
12: end for

The great advantage of SIMBA is that it can even choose @ia@lfeatures if this
contributes to the overall performance.

In terms of computational complexity, RELIEF and SIMBA arai®qlent. They can
be computed irO(T - N - m) whereT is the number of iterationsy is the number of
features andn is the size of the samplg.

5.3 Distance Measures

After the features for the domains are computed differestdice measures can be used
to determine their similarity score. In section 3.2.1, feample, the L1-norm is used to
compute the distance. In the first section different distameasures for feature vectors
are introduced.

In the second section the idea of partitioning the domaia smaller units is pre-
sented. For each partitioned domain a set of feature veiste@mputed. Thus, different
similarity measures for vector sets are defined.

5.3.1 Simple Distance Measures

It is assumed that feature vectots= (xg, z1, ..., z,)T andy = (o, %1, ..., yn)" Of the
same lengt are compared. Different L-distance measutes y) as described in Table
5.1 were tested on the four data sets.

Two statisticaly?-distances were also used (See Table 5.2).
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| Distance measure| abbreviation | Formula |
Manhattan Distance L1 dra(x,y) = > |z — uil
Euclidean Distance L2 dra(%,y) = /Doro(Ti — Ui)?
Maximum Distance Lo doo (X, y) = max; |z; — i

Table 5.1: The L-distance measures used for feature veatoparison.

] Distance measure\ abbreviation \ Formula \
i no (zi—yi)?
Xi- Distance G dye(,y) = Yoy Bt
X5- Distance X dys(w,y) = Sy Lt

Table 5.2: They?-distance measures used for feature vector comparison.

5.3.2 Domain Partitioning

We could use domains as defined by SCOP or CATH for classificaBanis there a
simple algorithm to define the domain automatically?

An easy way to define a domain would be to consider a chain amorpea cut if two
conditions are fulfilled:

1. The distance between the coordinates of @yeatoms on the chain is very large.

2. The resulting domain contains at leAStamino acids.

The first condition implies that different domains on a chaia separated in space
by large distances. The second condition ensures that tsoldomains have a minimal
size.

In order to check condition one, a distance map is computddiwb free parameters
a andb:

¢y = o (ali=il+blui—u;1?) (5.28)

The minimum of the distance map is computed by:

m* = argmin > c;, (5.29)

lsmsn ;e
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wheren is the number of amino acids on the chain. The visualizatiéheosum in eq.5.29
is presented in Figure 5.6.

m*< j

2 i<m*

(m*,m®)

Figure 5.6:Domain partitioning The distance map for domain partitioning is presented.
The cut is made at the poi(t:*, m*). The dark gray rectangle marks the sum indicated
in eq. 5.30.

The cut is made if:
Z ¢ < afn—m")m”* (5.30)

<m*<j

The second condition is fulfilled if:

m* >t and (n—m") >t.

Here the parametersandt have to be chosen.

5.3.3 Measures on Vector Sets

After the domain partitioning, a chain is associated witreacf domains. For each of
these domains a feature vector is computed. Thus a distagasure for vector set com-
parison has to be found.

The general problem is stated as follows: Find the distaeteden two vector sets
V ={V,V,, ...V, }andW = {W; W, ..., W, } where the two vector sel¢ and
W contain vectors of same size. Manhattanydmistance are used to compute the dis-
tanced between two vectors.

Next Neighbor Distance

The Next Neighbor Distanceomputes the minimal distance between two vectors from
the two vector sets.

D1(V,W) = mind(V;, W)
2y
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Sum of Next Neighbor Distance

All vectors in the set could be considered by finding for eaettar in one set the corre-
sponding vector in the other set. These distances are tihhemed up to compute the final
distance. Since the matching is not injective, the problambe solved i (n). However
this method does not induce a metric.

D2(V,W) = ng%;nd(Vi,Wj)

Minimum Matching Distance

The Minimum Matching DistancéMMD) is computed using the Hungarian algorithm
[17]. The Hungarian algorithm solves the problem of assigro each vector in one set
one and only one corresponding vector in the other set satlikagdum of the pairwise
distances is minimal. We assume thet < |W| and letr be an injective function.

D3(V,W) =min Y _d(V;, W)
For the computation of the MMD the C-implementation libhunga-v0.1.2.tgz li-

brary from Cyrill Stachniss was used (http://www.infornkatini-freiburg.de/ stachnis/misc.html).
The computation complexity i©(n?).
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5.4 New Algorithm

The algorithm of the new method has 3 steps:
1. Extract the features.
2. (Select the relevant featuresptional

3. Compute the distance matrix.

Extract the features.

The feature extraction for Gl features can be described lgpthm 3, whereV is the
number of protein structures in the data base.

Algorithm 3 GI Algorithm
Initialize Iy = 0
fori=1to N do
for j =1to N do
ComputeH {a By, A}

_ Va(u) T (wi-uy)
&= Wau) M= uj>|

_ Valuy) T (ui—uy)
g= |w<u§>| C —u)]

_ Va(uw) T Va(uy)
7 Na(u)] [Va(uy)]

= |ui —
Update[n — Iy + |Va(u)| - |[Va(uy)|
end for
end for

The algorithm can be further extended by SH and D-Wigner ioesr For the SH
only the last line of the algorithm needs to be changed (Segerdhm 4). The Legen-
dre polynomials necessary for the Spherical Harmonics coatipn were computed with
the MATPACK 1.8.1 library? by Berndt M. Gammel. The resulting array gets two addi-
tional indicesl andm. After computation, the results are made invariant by camgu
the bandwise enerdy”’ __, |T4"|2.

For the D-Wigner matrices, Algorithm 5 is applied. Now, tlesulting arrayl}; is
matrix valued, where eaclf, € C#+1x(2+1) js a complex-valued matrix. The result
array is made invariant by taking norms columnwise. Henmeeéchl we obtain2/ + 1
invariant features, instead of one feature as for the Skddalgorithm.

In all three casedy; is a four dimensional histogram. The expansion paranieteéds
to I after normalization a further dimension for the SH and th&/igner methods. This
histogram is transformed to a one dimensional vector by Atigm 6.

2http://www.matpack.de
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Algorithm 4 SH Algorithm

Initialize I;™ = 0
fori=1to N do
for j=1to N do
Computell = {a, 3,7, A}
Updatel;" — I + Y}, (m=) - [Va(w)] - [Va(u))|
end for J
end for

Algorithm 5 D-Wigner Algorithm

Initialize I, = 0
fori=1to N do
for j=1to N do
Computell = {«, 5,7/, A}

DetermineR = MV, ; _,

_ [ Va(w)  Va(uy)  (uj—uy)
whereM = [[5aa) ®etol o=l
Update[ﬁ — Iﬁ + [V (uw)| - |Va(uy)] ~Dl(R)
end for
end for

Algorithm 6 Iy to Feature vector

In the four dimensions of;; the number of bins ig, no, n3 andny,.
count =0;
for : = 1ton; do
for j = 1ton, do
for k =1tonsdo
for [ =1ton, do
featvector[count] =/, », ns.n,
count=count+ 1
end for
end for
end for
end for
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Compute the distance matrix.

The distance matrixdgnat) is computed by computing the pairwise distandeetween
two feature vectorsf¢atvecton. If the data set containd protein structures, than the
distance matrix is computed by:

Algorithm 7 dmat computation
fori=1to N do
for j=1to N do
dmat(i, j) = d(featvector, featvector,)
end for
end for
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Chapter 6

Benchmark of Methods

For the evaluation of the new method and the comparison wistieg methods, the
Princeton Shape Benchmark (PSB)[31] is used. The PSB is piesserthe first section.

In the second section, the experimental framework is intced and the new method is
evaluated for different parameters. In the third sectidfer@nt distance measures and do-
main partitioning was tested. The results of feature sielecin the experimental datasets i
presented in section four. In section five the results of #ve method are compared to the
results of state-of-the-art automatic classification rmd¢h Finally, the time requirements
for the different datasets and methods are presented ioiséct

6.1 Evaluation Tools

The PSB provides a suite of tools for comparing shape majdcuial classification algo-
rithms. The evaluation is based on five statistical meastiegrest Neighbor (NN), First-
Tier, Second-Tier, E-Measure and the Discounted Cumul&aia (DCG). The same pro-
cedure starts the computation for all five measures: Eaatbbf the database is taken
as a query object and the distances to all other query olgestsomputed and stored in a
distance matrix. The five statistical measures are compagdedd on the distance and the
class label.

The Nearest Neighbomeasures the percentage of the closest matches that belong t
the same class as the query. This provides an intuition onvelva nearest neighbor
classifier would perform. The desired value for this measiod course 100%.

TheFirst- and theSecond-Tiemeasure the percentage of models in the query’s class
that appear within the toA” matches, wher& depends on the size of the query’s class.
Specifically, for a class withC'| members,K = |C| — 1 for the first tier, andkX’ =
2. (]C] — 1) for the second tier. The optimal result has the value 100%.

The E-Measureis a composite measure of the precisiBrand recallR for a fixed
number of retrieved results, whefeand R are defined by:

|{relevant structures}| N |{ found structures}|
|{ found structures}|
_ |{relevant structures}| N |{ found structures}|

= 6.2
[{relevant structures}| (6.2)

p— (6.1)
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Since the user is more interested in the query results withradimilarity to the input
query, only the first 32 most similar retrieved results anestdered. After computing the
precision and recall for those results, the E-Measure siodd by:

P R

The higher the E-Measure value the better the result, wihpiérfect score being
100%.

The DCG weighs the results near the front of the list more tlarect results later
in the ranked list. For details on the computation of DCG sé¢ [Bhe best value for the
DCGis1.0.

6.2 Classification Results

In this section the results for the Group Integral featurepaesented and evaluated with
the PSB on experimental data sets.

6.2.1 Experimental data sets

The features were evaluated on four representative dasacadéd: 'all-classes’, 'all-
alpha’, '27fold’ and 'cath’. The first three data sets areelak according to the SCOP
classification. The fourth data set consists of all CATH 2 #ies.

The ’all-classes’ data set consists of all SCOP entries wighstcs ?.1.1.1. The ’all-
alpha’ data set contains the entries with the sccs a.?.Re?:2I7fold’ data set was pro-
posed for the testing of fold classification by [14]. The ds¢h was selected by their
characteristics so that all proteins in the data set hagalhes 40% of the sequence iden-
tity for the aligned subsequences longer than 80 residues.

The number of entries and the classification used for thedata sets is represented
in Table 6.1.

] dataset \ # of domains\ classification Ievel\ # of classification classqs

all-classes 2,650 SCOP-class 7
all-alpha 3,680 SCOP-fold 172
27fold 685 SCOP-fold 27

cath 20,937 CATH-homology 2147

Table 6.1:Testing datasetsNumber of domains for the classification of the four testing
sets: ’all-classes’, 'all-alpha’, '27fold’ and 'cath’.

6.2.2 Implementation details

The feature extraction was implemented as described inréwequs chapter. Experiments
were conducted for the Group Integrals without Sphericahttaic Expansion (noSH),
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with Spherical Harmonic Expansion (SH) and with D-Wignepg&rsion (D-Wigner).

According to experimental results, the parameters wersaihas in Table 6.2. The
parameter is the variance used in eq. 5.7. Since the histograms onlgidenvalues in
the range betweet and 1, the distance\ and the sequential distance between proteins
is downscaled to this range. Here it is assumed that atontisefuapart thar0A° in
coordinate distance antd apart according to their sequence distance can be discarded
The four dimensional histogram consists of bins as indicatehe table. The coordinate
distance can be assigned to 16 bins, the anglasd~ to two bins and the sequential
distance to 8 bins. For the Spherical Harmonics and the Da@/ignatriced.y,,,, and
lawig are the cutoff for the expansion.

If not stated otherwise these parameters were used for daiigru

Gradient computation o 400
Coordinate Distance Scaling| DScale 0.02
Sequence Distance Scaling| SegDScale 40

Histogram Bin Dimension hist IT [16,2,2,8]
Spherical Harmonics Coefficient I ,qrm 1
D-Wigner Matrix Coefficient Lawig 1

Table 6.2:Parameter set for the new methodf not stated otherwise, this parameter set
was used for the computation of the Gl, SH and D-Wigner festur

Further, the performance of different expansion coeffisiénwas examined for the
SH and the D-Wigner features.

Finally, the Local Features based on Spherical HarmoniésSH) were examined.
Here the histogram bin size per atom (perAtom) and per prdgrProtein) could be
variated.

The implemented C++ classes and methods are briefly presemgpendix C.

6.2.3 Experimental results

In Table 6.3 the results for the 'all-classes’ dataset aesgmted. As expected, the clas-
sification rate is very high since division into SCOP classeguite an easy task. The
SH did not improve the already very good classification tsstlhe D-Wigner results
are worse than SH, although we would expect them to give tretselts. The D-Wigner
matrix features will be evaluated in more detail later irsthection.

[ Feature [INN| 1T [ 2T | EM [ DCG |

noSH | 99.8|86.8| 91.4| 13.4| 96.7
SH 99.8 | 87.6| 92.5| 13.4| 97.2
D-Wigner | 99.5| 86.1| 89.9| 13.3| 96.3

Table 6.3:Results 'all-classes’ Results on the 'all-classes’-dataset with Gl, SH and D-
Wigner features.
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In Table 6.4, the search is performed on the ’all-alpha’ sksttaThe results are not
as good as on the 'all-classes’-dataset since the claswificato folds is a more diffi-
cult task. However)7.8% is a quite high classification rate and the SH improve the Gl
features.

| Feature [INN| 1T | 2T | EM | DCG |
noSH 97.4|84.8| 88.6| 35.6| 94.4

SH 97.8 1 89.3| 92.2| 37.4| 96.0
D-Wigner | 97.4 | 87.5| 90.4| 36.8| 95.2

Table 6.4:Results 'all-alpha’. Results on the ’all-alpha’-dataset with GI, SH and D-
Wigner features.

In Table 6.5, the results for the '27-folds’-dataset arespreged. They are much worse
than the previous two testing sets since the domains of fffel&s’ have less thah0%
sequential similarity and are thus hard to classify. Alke, number of samples per class
is far less than in the previous two sets. The number of sag#e class is important,
since it increases the probability to find a similar struetirone class.

| Feature [ INN | 1T | 2T | EM [ DCG |
noSH | 77.3|31.0] 41.2| 27.2] 67.9
SH | 78.8|32.4|44.7|28.7| 69.3
Dwigner | 77.8 | 29.5| 39.1| 26.2| 66.8

Table 6.5Results '27fold’. Results on the "all-classes’-dataset with Gl, SH and D-Wigne
features.

In Table 6.6, the results for the 'cath’ - dataset are preskrithey are very good since
the homologous are very well populated and therefore ongasistructure to the query
structure could be always retrieved.

| Feature | INN | 1T | 2T | EM | DCG |

SH 98.9|726|77.7|41.2| 91.1
Dwigner | 98.8 | 71.0| 75.2| 41.0| 89.9

Table 6.6:Results 'cath’. Results on the 'cath’-dataset with GI, SH and D-Wigner fea-
tures.

In Figure 6.1, the Precision-Recall graph for the four dataseplotted. The optimal
graph for this plot is when the line is perfectly horizontaldahas the value one. The
'all-alpha’ and ’all-classes’ datasets have a very goodene! rate, while the '27folds’
dataset performs worse.

In Table 6.7 the results for the SH and the D-Wigner featunés avfferent expansion
coefficientd on the '27folds’ dataset are presented. The higher the expacoefficient
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Figure 6.1:PR-graph for the four datasets. The PR-graph for the four datasets 'all-
classes’, 'all-alpha’, '27folds’ and 'cath’. The featunesre computed with SH.

[ gets, the worse is the classification rate. This is true foh loe SH and the D-Wigner
expansion coefficients. An explanation for this result &t the level of detail for protein

retrieval should not be to high, since we are not looking far €xact same copies of
a structure but for similar relatives. Hence given less fatiehts, the description of the
structure stays more general.

| Feature [ | [ INN | 1T | 2T [ EM | DCG |
SH [1]78.8][324]44.7[28.7] 69.3
SH |2|784|31.8|436|28.1| 686
SH |3|775|31.2]428|27.5| 68.1
SH |4]76.0]29.7/41.0| 26.3| 66.9
Dwigner | 1 | 77.8| 29.5| 39.1| 26.2| 66.8
Dwigner | 2| 77.2| 29.6| 39.2| 26.1| 66.8
Dwigner| 3| 76.9 | 29.4| 38.7| 25.7| 66.5

Table 6.7Results for different expansion coefficient$. Results for the '27folds’-dataset
for the SH and the D-Wigner based on different expansionficoeits!.

In Table 6.8 the results for the LF-SH were examined. By vayhre bin size per

atom and per protein, different results were achieved. TheH features perform by
8.1% worse than the global SH features.
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| Feature | {DScale, SeqDscaje| perAtom | perProtein | INN | 1T | 2T [ EM | DCG |

LF-SH {0.02, 24 {10.2,2,6 10 68.0[ 225|31.8| 19.9| 60.3
LF-SH {0.02, 40 {10,2,2,6 10 70.7| 23.0| 31.0| 20.6 | 60.8
LF-SH {0.02, 50 {10,2,2,6 10 68.6 | 22.2|32.8| 21.3| 614
LF-SH {0.01, 24 {10,2,2,6 10 60.1] 18.6|28.0] 16.3| 57.1
LF-SH {0.03, 24 {10,2,2,8 10 70.5|23.6(32.9|21.1| 61.1
LF-SH {0.04, 24 {10,2,2,6 10 63.9|21.9/30.8| 19.4| 59.3
| LF-SH | {0.03, 40 {10,228 10 | 69.1]24.0]32.4[21.5] 613 |
LF-SH {0.02, 40 {5.2,2.6 10 67.0| 20.6] 28.2| 18.7| 585
LF-SH {0.02, 4¢ {15.2,2,6 10 68.1| 22.1| 30.5| 19.8| 59.9
LF-SH {0.02, 40 {10,2,2,6 5 67.2| 23.1]32.1| 20.6| 60.6
LF-SH {0.02, 4¢ {10,2,2,6 15 67.2| 20.9)| 28.6| 18.8| 58.9
LF-SH {0.03, 24 {10223 7 69.2 | 23.9]33.4| 21.4| 61.0
LF-SH {0.03, 24 {6,2.2,3 6 67.6 | 24.8| 34.2| 22.6| 61.3

Table 6.8:Results for LF-SH features. Results for the '27folds’-dataset with LF-SH
features.

6.3 Results for different Distance Measures

The results obtained by different distance measures aszipied on three of the four
datasets. In the first experiment, the results without dorpattitioning are considered.
The distance measures as described in Table 5.1 and TableB2ised. In the second
experiment, domain partitioning is performed automalycahd the distance is computed
by the distance measurésl — D3.

6.3.1 Results without Domain Partitioning

Using domain partitioning according to SCOP, the perforneasfdifferent L-norms and
statistical baseg? distance measures is evaluated in Table 6.9. The featurescom-
puted with the same parameters as in Table 6.2. Thand thel2 distance measures
perform best, while thg3 distance measure performs worse.

6.3.2 Results with Domain Partitioning

In Table 6.10 the distance measurB$ — D3 were tested with the parameters=
0.01,b = 0.001,a = 5,t = 50 (See eg.5.28 and eq.5.30). Since performed best in
the previous section for the L-norm based distance measmetg? performed best for
the ? distance measures, they were chosen for the computatibi efD3. The D2 dis-
tance measure performs best. However, the results with idgpaatitioning are byt.3%
worse on the '27folds’ dataset than results without domaiigning.

Although the proposed domain partitioning algorithm did ingprove the results, the
author believes that a good domain partitioning algorittan be found. For this case,
different distance measures on vector sets are defined.
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| Class | d [INN]| 1T | 2T | EM | DCG |
all-classes L1 | 99.8| 87.6| 92.5| 13.4| 97.2
all-classes L2 | 99.8| 86.8| 90.7| 13.1| 96.8
all-classeg L., | 99.5| 84.6| 89.3| 13.1| 96.2
all-classes 7 | 99.8|86.1| 91.9| 13.4| 97.0
all-classes x3 | 93.8 | 61.1| 74.4| 9.3 | 89.3

all-alpha | L1 | 97.8|89.4|92.2| 37.1| 96.0
all-alpha | L2 | 97.8 | 89.2| 92.0| 37.0| 96.0
all-alpha | L, | 97.8 | 88.5| 91.9| 37.0| 95.8
all-alpha | x? | 97.8|88.5| 91.9| 37.0| 95.8
all-alpha | x% | 93.4|52.3|58.5| 29.5| 83.4

27folds | L1 | 78.8 | 32.4| 44.7| 28.7| 69.3
27folds | L2 | 78.7 | 32.5| 44.4| 28.9| 68.9
27folds | L, | 71.7| 28.2| 40.1| 25.1| 65.1
27folds | x? | 77.8| 31.0| 42.8| 27.5| 68.0
27folds | x3 | 54.9| 15.2| 21.6| 13.6| 53.4

Table 6.9:Results without domain partitioning. Results without domain partitioning
using L-norm and the distance measures.

] Class \ D \ d \1NN\ 1T \ 2T \EM \DCG\
all-classes D1 | L1 | 99.8 | 87.4| 92.5| 13.2| 97.1
all-classeg D2 | L1 | 99.8 | 87.9| 91.7| 13.3| 96.9
all-classeg D3 | L1 | 97.3 | 78.5| 88.8| 11.6| 94.7
all-classes D1 | x7 | 99.7 | 86.6| 91.9| 13.1| 96.9

all-classes D2 | x? | 99.7 | 87.2| 91.2| 13.2| 96.7
all-classeg D3 | x? | 98.6 | 81.3| 88.5| 11.6| 95.1

all-alpha | D1 | L1 | 97.6| 86.0| 88.8| 35.9| 94.5
all-alpha | D2 | L1 | 97.7 | 87.0| 90.2| 36.7| 95.2
all-alpha | D3 | L1 | 97.7 | 87.1| 90.2| 36.7| 95.2
all-alpha | D1 | x? | 97.4 | 85.2| 88.2| 35.7| 94.2
all-alpha | D2 | x? | 97.8 | 89.3| 92.2| 37.4| 96.0
all-alpha | D3 | x? | 97.4 | 85.7 | 88.8| 36.2| 94.5

27folds | D1 |L1| 71.0|30.6|41.7| 26.7| 67.0
27folds | D2 | L1 | 74.1|31.7|42.9| 27.5| 68.1
27folds | D3 | L1 | 69.4|29.4|39.8| 25.5| 65.6
27folds | D1 | x2 | 70.0 | 29.0| 39.9| 25.,5| 65.6
27folds | D2 | x3 | 73.2|29.0| 39.7| 25.4| 65.8
27folds | D3| x3 | 68.4 | 27.7| 38.3| 24.5| 64.5

Table 6.10:Results with domain partitioning. Results with domain partitioning using
D1, D2 and D3 distance measures on vector sets.
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6.4 Results obtained by Feature Selection

The training and testing set were chosen as in [14] from th®lds’ dataset and have the
sizes as in Table 6.11. The training data set has less tharoB88%# sequence identity for
the aligned subsequences longer than 80 residues, whiledtieg set has less than 40%
of sequence identity per protein pair.

Training Set| 27train| 303
Testing Set| 27test| 382

Table 6.11:Training and testing set for feature selection.Training and testing set for
feature selection are made up of the '27folds’ dataset.

After applying SIMBA and RELIEF to the training dataset, theights in Figure 6.2
are obtained. The greater the value of the weight, the hidgggamportance of this weight
is.

0.002

cIéssZ7—tréin-weighé SIMBA ———

‘ classé7—train—Weights RELIEF ———
09

0.0015 J 0.8 I

0.001 r

| IM Ld A“LL

P

-0.0005 . . . . . .
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Figure 6.2:\Weight vectors computed by RELIEF and SIMBA. The weights computed
with RELIEF (left) and SIMBA (right) for the dataset '27trainThe z-axis scales the
features, thg-axis stands for the computed weight for the feature. Ordyf¢latures with
a weight greater than a certain threshold are selected.

After the weights were computed on the training set, theufest computed on the
testing set were selected using these weights. For thessthpdrameter set in Table 6.2
1025 features are computed per protein domain. For theai@tuon the testing dataset,
only a certain percentage (10%, 20%, 40%, 60%, 80%) of the2B features was used
according to the weight vector. The RELIEF algortihm perfechworse than SIMBA
(see Table 6.12). With the SIMBA algorithm better result2hy% could be reached than
without using any feature selection. The feature size csmlad reduced by using a feature
selection algorithm, thus saving memory space.
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Feat. Selection| INN | 1T 2T | EM | DCG
without 65.2 | 30.1| 42.2| 24.6| 63.7

RELIEF (5%) | 62.6 | 29.9 41.8] 23.9] 62.5
RELIEF (10%)| 64.9 | 30.4 | 42.8| 24.3| 63.4
RELIEF (20%) | 64.4 | 31.4 | 43.4| 25.3| 64.2
RELIEF (40%) | 63.6 | 31.5| 43.6| 25.4| 64.2
RELIEF (60%)| 63.9 | 30.8 | 42.8| 24.9| 63.9
RELIEF (80%)| 64.7 | 30.2 | 42.7| 24.6| 63.8

SIMBA (10%) | 655 | 33.1| 46.3| 26.8| 66.0
SIMBA (20%) | 67.3 | 33.5| 46.7 | 27.4| 66.8
SIMBA (40%) | 66.8 | 32.9| 46.0| 26.9| 66.1
SIMBA (60%) | 66.8 | 32.8 | 45.7| 26.8| 66.0
SIMBA (80%) | 66.5 | 32.0| 44.7| 26.2| 65.4

Table 6.12Results with feature selectionResults for feature selection by RELIEF and
by SIMBA on the '27test’-dataset.

6.5 Comparison to state of the art methods

In this section, the performance of the alignment methodswethods based on structural
fingerprints is evaluated using the PSB. Afterwards, thelt®swe compared with each
other and with the results obtained with the proposed method

6.5.1 Comparison to Alignment Methods

The DALI server! provides a standalone application called DaliLite [10]isTprogram
was used to compute the alignments and the pairwise Z-sobtbeg '27fold’ resulting

in 235,641 alignments. The results of the evaluation aregmted in Table 6.13. DALI
performs better by.3% than the proposed method. However, the classification time i
one week by DALI as opposed to 2 minutes by the proposed method

[Feature [ INN | 1T | 2T | EM | DCG |

SH 78.8 | 32.4| 44.7| 28.7| 69.3
DALI 85.1|59.1| 67.8| 45.0| 82.8

Table 6.13:Comparison of results with DALI. Comparison of the results on the
'27folds’-dataset computed by DALI and by the new method.

The dataset used in [18] is the Skolnick clustering set bingj of 33 proteins classi-
fied into four families. The validation of the clustering linetCMO method wa$8.7% ac-
curacy (.3% false negatives an@l false positives). The computation required 528 con-
tact map alignments. The computation time for one alignmamged between 1 minute
and 2 hours.

Ihttp://www.ebi.ac.uk/dali/
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For comparison, SH features were computed with group iategin the Skolnick
dataset. After the feature extraction, k-means clustenag performed on the dataset
and evaluated with the 'silhouette’ function provided bytMha 7.0 Statistics Toolbox.
The functionsilhouette(X,clustplots cluster silhouettes for the-by-p data matrix.Xx,
with clusters defined bylust. Rows of X correspond to points, columns correspond to
coordinates.

The silhouette vlaue is defined by:

min(AvgdBetweelf:, k)) — AvgdWithin(¢)
max(AvgdWithin(i), min(AvgdBetweelrti, k)))’
whereAvgdWithir{:) is the average distance from th¢h point to the other points in its
own cluster, andAvgdBetweefi, k) is the average distance from th¢h point to points
in another clustek.

The silhouette value for each point is a measure of how sirttilt point is to points
in its own cluster compared to points in other clusters, ames from -1 to +1. The
optimal value for the silhouette function is 1.

In Figure 6.3 the result of the k-means clustering and thedce® matrix based on
the SH features is presented. Besides one data sample, t@linsrare clearly separated
into four clusters. The original functional classes aredhmme as the classes obtained by
k-means clustering, wheke= 4 is the number of protein families. In the distance matrix,
the samples with a small distance have values near zero lfwhiblack in color) and
values near one for great distances (which is white in cold four clusters are clearly
separated in the distance matrix as well.

0 0.2 0.4 0.6 0.8 1
Silhouette Value

Figure 6.3:Comparison of CMO with GI. The results of k-means clustering on the
Skolnick dataset. Left the silhouette values as computeMatfab are presented. The
silhouette values can range between -1 and 1, where 1 is tieabwalue. They mea-
sure the quality of the k-mean clustering. A silhouette gatear one indicates, that the
samples in one cluster are very close in the feature spacatahé same have a great
distance to samples in other clusters. Right the distancexatisualized. The proteins
are listed according to their classes. The black squareg dle diagonal indicate, that
the features in one cluster have the smallest distance.

The proposed features perform very well on the Skolnicksktand the classification
can be computed in several seconds as opposed to the highdmaming CMO com-
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putation. Further, with the CMO approach not more than 30@epre can be compared,
which makes the method not computable on our four data sets.

6.5.2 Comparison to Methods Using Structural Fingerprints

In Table 6.14, the results of the proposed method are compart@e results obtained by
PRIDE. The implementation of the PRIDE features was perforaseh [4]. However,
the bins of the histogram were not combined to contain a icertamber of samples.
Thus, the PRIDE score was not evaluated by contingency talallgyss, but just simply
using theL 1 norm. The results obtained by the new method are betterciedigefor the
'27folds’ dataset.

] dataset \ Feature\ 1NN \ 1T \ 2T \ EM \ DCG \

all-classes SH 99.8| 87.6| 92.5| 13.4| 97.2
all-classes PRIDE | 99,7 | 84.8| 88.2| 13.3| 96
all-alpha SH 97.8 | 89.3| 92.2| 37.4| 96.0
all-alpha | PRIDE | 96.8 | 80.7| 85 | 34.3| 92.7
27folds SH 78.8 | 32.4| 44.7| 28.7| 69.3
27folds | PRIDE | 70.7 | 29.4| 38.9| 25.9| 65.1
cath SH 98.9|72.6| 77.7|41.2| 91.1
cath PRIDE | 98.8 | 66.8| 73.2| 39.1| 88.8

Table 6.14:Comparison with PRIDE features. Comparison of the results on the
'27folds’-dataset computed by PRIDE and by the new method.

In Table 6.15, the results of the proposed method are compaitbe results obtained
by the Gauss Integrals (Gauss). For the feature computtteéprogran? provided by
the authors of [26] was used. SH features perform better @auss integrals. For the
difficult '27folds’ dataset, SH outperform Gauss featurgSi1%.

| dataset | Feature] INN | 1T | 2T [ EM | DCG |
all-classes SH 99.8 | 87.6| 92.5| 13.4| 97.2
all-classes Gauss| 99.2 | 73.3| 81.2| 12.1| 93.6
all-alpha SH 97.8 | 89.3| 92.2| 37.4| 96.0
all-alpha | Gauss| 94.2 | 63.8| 72.9| 29.5| 87.0
27folds SH 78.8 | 32.4|44.7| 28.7| 69.3
27folds | Gauss| 67.6 | 26.1| 35.5| 23.2| 63.3

cath SH 989 |726| 77.7|41.2| 91.1
cath Gauss | 98.4 | 69.8| 76.4| 40.2| 90.0

Table 6.15:Comparison with Gauss Integrals. Comparison of the results on the
'27folds’-dataset computed by Gauss Integrals and by thhemethod.

2http://www?2.mat.dtu.dk/people/Peter.Roegen/Gaunssgrals.html
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The clustering properties of the Gauss integral featurestlae SH features are pre-
sented in Figure 6.4. There are much more values of the sttefunction below zero for
the Gauss integral features (left) than for the featureainbdt with Spherical Harmonics
(right). Thus, the clustering properties of the SH featwars better than the clustering
properties of the Gauss features on the '27fold’-dataset.

T T : '
r »E %
gt
i —  —
T —— —
— _
sssssssssssss 0 0.2 4 0.6 0.8 1

Figure 6.4:Comparison of clustering properties with Gauss features.The Matlab
function 'silhouette’ applied on the Gauss (left) and thef8htures (right).
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6.6 Time requirements

The computations were performed on a Pentium IV Procesdbtr2y8 MHz and 1024
MB RAM. The time requirements for the new method on the fouadats are presented
in Table 6.16. The time requirements increase polynomagiyending on the size of the
dataset.

| dataset | size | Time |
27folds 685 2min
all-classes 2,650 | 40 min
all-alpha | 3,680 1h
cath 20,937| 2h

Table 6.16:Time requirements new method.Time requirements of the new method on
different datasets.

The time requirements for the distance matrix with DALI, PE|5auss and the new
method on the "27folds’ dataset were considered in Tablé.&learly, the new method
is 5040 times faster than DALI. The same computation timeseded by PRIDE and by
Gauss as by the new method.

| Method | Time |

New Method| 2 min
PRIDE 2min
Gauss 2min
DALI 1 week

Table 6.17Comparison of time requirements.Comparison of the time requirements on
the '27folds’ dataset with different methods.
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Chapter 7

Conclusions

In this work, a new method for protein retrieval and clasatimn based on structural fea-
tures is introduced. This method is evaluated on existilogepn classification databases
and compared to other methods. When compared to the aligrimaseti methods, the
classification performance is worse, however the compurtatme is lower. The other

methods based on structural fingerprints perform worsettiaproposed method. Thus,
the Group Integrals (GI) should be used for computing thecsiral fingerprint.

7.1 Summary

Gl are a fast and easy to implement method for protein strecairieval and comparison.
The SH expansion gave B5% improvement to the results computed by GI. The D-
Wigner expansion did not improve the results, since thergegm of the structure is too
terse.

The Gl rely on a kernel function. Thiebased kernel function proposed in this method
can be further extended. So, different angles or othermmébion (maybe sequence based)
could be incorporated into the kernel.

The local features did not perform as well as global feat(®e$s worse), thus do-
main partitioning rather than local feature descriptiodasired.

For protein classification, different protein databasaste®COP, CATH, DALI, but
also many others. All the databases have different inpubatmlt formats. A major effort
was invested in understanding and parsing these file formassandardization of the
input output results, e.g. XML files could help making theni@ats more understandable
and easier to compare among each other.

Domain partitioning is a difficult task and there is no uniglgorithm for computing
the domains, since the description depends strongly oragie Not only domains, but
also motives in one domain can be considered, so that séy ridtan whole compact
units can be matched. We have not yet found a good domainigairtig algorithm. Ideas
on how to compare feature vector sets are presented in this wo

For the evaluation of the classification and the clusteriniger tools than PSB could
be considered. For example, the evaluation could be pee@nwith a Support Vector
Machine or statistic based methods. For the clusteringcie Component Analysis or
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simply the k-means algorithm can be performed to betteralise the data.
Feature selection should be trained in a learning enviromnk®r example, Neural
Networks could be used to learn the relevant features.

7.2 Outlook

For future work the following topics are of major interest:

e Kernel functionsshould be further explored. This could be done by using &diff
ent description of the atom configuration or incorporatirgy ehemical properties
into the kernel. The parameter set associated with therxikernel function was
determined in experiments. However, an optimal parametecauld be found by
using some learning framework.

e Domain and motif partitionindor proteins still lacks easy to compute algorithms.
A mathematically sound way to define a protein’s domain sthde found. This
model should incorporate existing knowledge and also tleenttal properties rel-
evant for a domain. Further, the decomposition of domaitesnmotives should be
studied.

e Unknown structureshould be classified using the Gl in order to test its classific
tion properties. How is Gl going to perform on a dataset wisamot labeled?

e Rather than only extracting the features and computing teente, adecision
frameworkshould be constructed, so that the statistical relevansgwdtural simi-
larity computed by Gl is defined. In this way, when the clasatfon is performed a
third level of classification besides accept and reject,elgnmsure can be defined.

e The feature extraction as defined by Gl can not replace akgrntowever, it can
be incorporated as@eprocessing step to alignmeiihe low time requirement and
the good results obtained on the data sets approve the usdarfiigotein structure
classification.
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Appendix A

Amino Acids

Amino acids are the basic structural units of proteins. Tdm&ycommonly classified into
the following groups based on the chemical and structuagemnties of their side chains :

e polar
e charged

¢ hydrophobic

In Figure A.1 - A.3 the amino acids according to their groupr@presented as a Ras-
mol image, using structural formulas and with their three ane letter code. The oxygen
atoms from the carboxy-terminal are marked red, the nitndgem the aminoterminal is
blue, while sulfide atoms are marked yellow in the Rasmol image
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‘ Lysine (+), Lys, K| | Arginine (+), Arg, R |

Figure A.1: The charged group.
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HN—CH-C—OH
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Figure A.2: The polar group.
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Figure A.3: The hydrophobic group.
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PDB statistics

Although the number of structures in the PDB databank isgtiwing by over 1000 new
structures per year (See Figure B.1), the number of foldsfasedidoy SCOP (Figure B.2)
and the number of topologies as defined by CATH (Figure B.3) bashanged any more
since 2004. Thus it is the basic task of classification to fifesaalgorithm that uniquely
describes and classifies new folds.

Figure B.1: The growth of molecular structures from 1993600
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Figure B.2:  The growth of unique folds as defined by SCOP fron81Z806.

Figure B.3:  The growth of the topologies as defined by CATH fr&83:2006.
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C++ Classes and Methods

pdbMol
+ CAlpha : double*
+ ChainlD : char*
+ SStype : char*
+ n_CAlpha : int
+ CAtom : double*
+ NAtom : double*
+ pdbid : QString
+ filename : QString
+ classification : QString
+ chaincnt : int
+ domains : Domain**
+ domaincnt : int
+ domain_ref : Reference
+ pdbMol()
+ ~ pdbMol()
+ readPDBFile(fi : FILE*, | ion : bool, intype : int) : int
*r il il : char*, ir : char*, | ion : bool, i pe : int) : int
+ save(tab : Table*) : Reference
+ load(tab : Table*) : void
+ serialize(ts : QDataStream&, save : bool) : void
+ computeF eatures() : void
+ showFeatures(plain : bool) : void
+ computeD omains(type : int) : void
+ getD ins(c : char*) : inList*
+ showHTML() : void
AbstractFeature +parent
+ data_allocated : bool
*+ weights : float*
+ dmeasures : const char* =
+ AbstractFeature(parent : Domain*) Domain
+ ~ AbstractFeature() + feat_ref : Reference
+ computeFeature() : void + offset : int
+ showHTML() : void rparent |+ start : int
+ show() : void + length : int
+ featcnt() : int \Mﬂ
+ dist_func(feat : AbstractFeature*, func : int) : float + Domain()
+ DistMeasures() : const char** + Domain(parent : pdbMol*)
+ DistMeasuresCount() : int + ~ Domain() =
+ save(tab : Table*) : void + showHTML() : void
+ load(tab : Table*) : void + save(tab : Table*) : Re_ference
+ load_persistent(tab : Table*) : void + load(tab : Table”) : void
+ serialize(ts : QTextStream&, save : bool) : void * serialize(ts : QDataStream&, save : hool

+doms

SHarmF eature DomainList
+ Dscale : const double =
+ SeqDscale : const int | DwignerFeature | ir _c"t BILI! 3
+ sigma : const double * Dscale : const double + id : QString
+ sizes : const int *+ SeqDscale : const int + min_label : int
+ histdil i + sigma : const double o
+ cutoff + sizes : const i P ILGAlp_llil i int
+ SHarmFeature(parent : Domain*) + hi : const int + label : int
+ computeF eature() : void + dwiq : const int
+ showHTML() : void + DwignerF eature(parent : Domain*)
+ show() : void + computeFeature() : void
+ featcnt() : int + showHTML() : void

+ showy() : void
+ featcnt() : int

Figure C.1: The Protein Similarity Search by Structural Besg (PSF) classes used in
the programming framework are depicted.
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ProteinDB

+ readmode : ReadMode

+ MasterTable : Table*

+ DomainTable : Table*

+ FeatureTable : Table*

+ ScopTable : Table*

+ CathTable : Table*

+ ProteinDB(filename : QString)

+ openRead(mode : ReadMode) : bool

+ openWrite(m : int) : bool

+ close() : void

+ insert(mol : pdbMol*) : void

+ insert_shared(mol : pdbMol*) : void

+ sort() : void

+ loadMolecule(mol : pdbMol*) : void

+ loadDomain(dom : Domain*) : void

+ getMoleculeBylD(mol : pdbMol*, pdbid : QString) : bool

+ makeQuery(l : DomainList*, no_of ret : int, sim_meas : int, search_type : int, results : queryResult*) : void
+ sortQuery(l : DomainList*, no_of ret : int, sim_meas : int, search_type : int, rank_ids : QString**, dists : float*) : void
+ annotateQuery(results : queryResult*, rank_ids : QString**, dists : float*, no_of ret : int) : void
+ showDistanceMatrix( : char**, cnt : int, sim_meas : int) : void

+ getNextChain(list : DomainList&, trenn : int) : bool

+ EBCPMM(f1 : double*, f2 : double*, k : int) : float
+ MBCPMM(f1 : double*, f2 ; double*, k : int) : float

Table

+ filename : QString

+ file : QFile

+ filedata : char*

+ current : char*

+ filedatasize : long

+ idsize : int

+ datasize : int

+ incsize : int

+ datapointer: char*

+ idpointer : char*

+ cur_data : char*

+ cur_id : char*

+ Table(filename : QString, idsize : int, datasize : int)
+ ~ Table()

+ openRead(mode : ReadMode) : bool

+ openRead(data : char*) : void

+ openWrite() : bool

+ openWrite(m : int) : bool

+ close() : void

+ rewind() : void

+ atEnd() : Reference

+ seek(ref : Reference) : void

+ getNext() : bool

+ search(id : const char*, n: int) : bool

+ bsearch(id : const char*, n : int) : bool

+ append(id : const char*, data : const char) : Reference
+ appendString(id : QString, data : QString) : Reference
+ sort() : void

GenHistogramND HistogramND
+ histogram : T* + histogram : double*
+ fuzzy : int + fuzzy : int
+ dim : int + dim : int
+ histosize : int* + histosize : int*
+ cumulsize : int* + cumulsize : int*
+ intcoord : int* + intcoord : int”
+ flagarr : int™ + flagarr : int*
+ flag : int* + flag : int*
+ fraccoord : double* + fraccoord : double*
+ fraccoord_inv : double* + fraccoord_inv : double*
+ current_weight : T* + current_weight : double*
+ current_indexcoord : int* + current_indexcoord : int*
+ GenHistogramND (histosizes : const int*, dim : int, fuzzy : bool)| |+ HistogramND(histosizes : const int™, dim : int, fuzzy : bool)
+ ~ GenHistogramND() + ~ HistogramND()
+ drawSample(coord : double*, weight : T) : void + drawSample(coord : double*) : void
+ drawSampleFuzzy(coord : double*, weight : T) : void + drawSample(coord : double*, weight ; double) : void

Figure C.2: The Protein Similarity Search by Structural Bezd (PSF) classes used in
the programming framework are depicted.
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