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1 Introduction

Today, a huge amount of digital images exists on private computers, the web, in digital galleries or professional
media archives, and the mass will continue to grow. Current image databases of publishing companies already
reach many thousands of terrabytes.

Retrieving images again from these databases is difficult. Think about your own holiday picture collection:
manual search through archives is hardly feasible on home desktop computers (if at all), not to speak of
professional archives with terrabytes of image data. Manual annotation of images and then using text retrieval
techniques on the key words is no general solution either. First of all, it is very labor and with that cost
intensive, and so only feasible for companies. It is subjective, since visual content tends to be interpreted in
different ways by humans. Other drawbacks are the language dependency of the key words, the possibility
of spelling mistakes or simply the use of wrong key words. Professional image classification schemes as
used for physical image archives like the ICONCLASS scheme try to overcome some of these difficulties by
formalizing the image description, however, they are difficult to handle by non experts.

We need automatic techniques to cope with the sheer amount ofdata. Of course, there are different tasks
to be solved. One of the first challenges met in this context was the search for “similar images”, where the
notion of “similar” was mainly defined from a color, texture and sometimes shape point of view. The images
were treated more or less globally, later also local considerations came into play. This problem was heavily
researched in the field of “Content Based Image Retrieval” (CBIR) in the 1990s and early 2000s, and work
still continues on this topic. In a CBIR system, typically one or more example images are used as input, for
which then images are retrieved sorted according to their relevance. This search method is known as “query-
by-example” paradigm, but there exist also others, like “query-by-sketch” or “query-by-color” to just name a
few.

However, a more common problem is the search for specific objects. Users are more interested in finding
semantic entities in images like people, cars or animals. Here we can distinguish between two main cases:
on one hand the detection of the very same physical object in an image, on the other hand the recognition of
members of object classes. Of course, object classes can be broad or narrow, and in order to be recognized by
their appearance, they have to share some visual characteristics. So the common notion for this query type is
to search for “visual object classes”.
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Eakins [17] proposed a classification scheme of query types consisting of three levels of increasing complexity.
In this scheme, the search for visual object classes falls into level 2. The partition of the query types were
made as follows:

1. Level 1: Search by primitive features
Images are retrieved by basic features like color, texture,shape, spatial layout or combination of these.
Most traditional image retrieval systems, as e.g. QBIC [21], SIMBA [60], VIPER/GIFT [48], or FIRE
[11] work on this level. All information necessary can be aquired from the images themselves.

2. Level 2: Search by derived/logical features
Additional knowledge is necessary for the retrieval of correct images, e.g. that a certain structure has
been given a specific name or that a visual object class has certain properties. The subtasks falling into
this category are:

a) Retrieval of objects of a given type
In this category, visual object classes are searched for. Incurrent research, the object classes
are rather narrow, however also more general classes like, e.g., “flowers” or “animals” could be
considered.

b) Retrieval of individual objects or persons
Here, exactly the same instance of an object or person shouldbe retrieved. Even if this task sounds
more difficult, since, e.g., not only any car, but a special car is searched for, this is an easier task
for an computer, since less variety in appearance has to be taken into account.

3. Level 3: Search by abstract features
Here, the meaning and purpose of images should be judged, so high level reasoning is necessary. To
our knowledge, currently no systems are really working at this level, besides maybe interpreting the
meaning of the prevalent color in an image [9]. Again, two subtypes can be distinguished:

a) Retrieval of named events or types of activity
The visual variety of images associated to a football match or an event like, e.g., the “Oktoberfest”
is enormous, so learning is difficult in this area.

b) Retrieval of pictures with emotional or religious significance
Here, the mood and/or meaning of images should be considered, something that even humans do
not easily agree on. This stage of image retrieval is not likely to be solved by machines in the near
future, if at all, since it requires some higher degree of intelligence.

2 Terminology

First of all, we have to clarify the meaning of certain terms used throughout this work, since they are often
used differently in literature. It is important to state ourinterpretation of these terms:

Object: “something material that may be perceived by the senses” [1]
In our work, we only deal with physical objects that can be counted. E.g., we would not consider
“snow” an object, but a “snow crystal”. The objects should also have limited extents or they have to be
sufficiently far away, so that they can be captured by images.
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(Visual) Object class: “a collection of objects that share some visual characteristics”
Examples for a visual class would be “cars”, “faces” or “motorbikes”, since they all have certain visual
properties in common, despite their sometimes large variance in appearance. The object class “tools”
would not fall into this category, since tools might look completely different, and the grouping is made
form a function point of view.

Classification: “systematic arrangement in groups or categories accordingto established criteria”[1]
In our case, images are assigned to a predefined number of classes. There might be as little as two
classes, e.g. in a simple object present/absent task, or many thousands, e.g. for automatic image an-
notation, where key words from a large pool have to be assigned to the images. In order to cope with
previously unseen classes, an additional class holding the“unknown” entities might be established.
One image might be assigned to different classes, in case different objects can be found, or different key
words apply. For most experiments however, only one object class is to be recognized per image. An
alternative term used in literature is “categorization”[31].

Identification: “idetification is recognition of an individual object within an class”[69]
Identification means not only to recognize any member of a class, e.g. a face, but a specific instance of
that class, say my face. The object class involved is determined implicitly with that.

Recognition: “the act to perceive to be something or someone previously known” [1]
The term “recognition” is used in two contexts: on one hand for specific objects, then this term is equal
to “identification”. On the other hand for generic objects [53] or object classes, then “classification” is
meant. We will explicitly state which notion of recognitionwe are using if not immediately clear form
the context.

Localization: “the discovery of the exact position of a given object in an image”
Typically, the location and the extent, sometimes also the orientation of the object has to be detected.
In a simple case, it is previously known (or assumed) that an instance of the object class is present, and
the most probable position is calculated. In other cases, recognition and localization are coupled: the
presence of a certain object class is determined by decidingwhether an object at a certain location, scale
and or orientation can be found. In the simplest case, a sliding window is applied to the image and the
subwindows are classified. As a result, a bounding box can be drawn around probable object locations,
other approaches even deliver segmented objects [31]. “Detection” is sometimes used interchangeably
for localization (e.g. [69]).

Detection: This term is used in a lot of context and thus the most ambiguous in this list. It is used in the
same was as “recognition”, both for visual classes [10] as well as specific objects. On the other hand, it
is sometimes synonymous for “localization” [69].

Appearance based methods:“features used for classification should be extracted from the visual
appearance of the image/object in question”
Keysers [28] states that appearance based methods only use pixel intensities themselves, which can
possibly be preprocessed (e.g. brightness corrected). However, most researchers [60] consider any
features calculated from the original image as “appearancebased”, even if more complex functions are
involved and we also hold this opinion. Even Keysers emphasizes that the term “appearance based”
should mainly establish a border to segmentation based approaches, not to general feature extraction
techniques.
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Figure 1: A specific object (here a VW beetle) from different views (from [5])

3 Problem Statement

In this work, we deal with classification and localization ofvisual object class members. In most cases, the
task to be solved is to determine whether an instance of an object class is present in an image or not. This
question sounds easy, since for humans this is a very easy task, and children at the age of 2 years are already
able to recognize many object categories. However, for a computer, this is a very hard problem. Let us
illustrate where the difficulties in this very general question lie.

3.1 Difficulty

Why is the recognition of visual object class members in images so difficult for a computer?

• 3D objects in 2D images
In the real world, we deal with 3D objects. When they are projected onto a 2D image, information is
lost necessarily, since not all views of the object can be captured at the same time. A car looks very
different seen from the front, rear, the side or from above, as can be seen in Figure 1. We humans have
no difficulty in recognizing these objects even so, since we know all views and how they are related. We
have a 3D model of the object class in mind. A general object recognition system would also require
this information. One could either supply it with a full 3D model (e.g. [54]), or with a sufficient number
of training samples showing different views. To our knowledge, 3D models have only be constructed for
the recognition of specific objects, not for object classes so far. A more restrictive but widely adopted
approach is to limit the search to a specific view, e.g. exclusively side views of cars or frontal views of
faces [18].

• Projections and geometric transformations
When we photograph an object, we project the 3D item onto a 2D image. Different images from the
same object are related by a homography [25]. To make things more tracktable, one often assumes
planar objects, or at least planar object parts. If we only consider small patches on the surface of
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Figure 2: Object variability for the rear of a car

an object, this is approximately true. For planar objects, we have to cope with translations as well
as similarity, Euclidean, affine or projective transformations. To simplify things, we usually assume
infinite cameras and with that transformations only up to affinity, since they are more easy to handle
mathematically.

Let x = (xx, xy), xx, xy ∈ R be the coordinates of a pixel in an image, then the new coordinatesx′ of
the transformed point are:

x
′ = Ax + t (1)

where the type of the transformation depends on the properties ofA:

A = I translation
A

T
A = kI similarity transformation

A
T
A = I and

A
−1 = A

T Euclidean transformation
det(A) 6= 0 affine transformation

These geometric distortions make a direct comparison of images of even the same object difficult, as
can again be seen from image pairs in Figure 1.

• Occlusions
In many real world photographs, the object is only partiallyvisible, since it is occluded to some extent,
or some parts of the object stretch beyond the image border.

• Intra class variability
The objects typically have a great variability in appearance and layout of the parts. Even if we have
a very narrow object category, e.g. “car”, and they are all viewed from the same perspective, e.g., the
rear, they can look rather different in detail (see Figure 2).

• Non rigid transformations of the object itself
Some objects are composed of articulated parts, e.g., humans, which makes recognition according to
the shape difficult. Other objects have a “soft” structure with no specific outline, e.g., clouds or toy
animals.

• Recording procedure
The recording process also introduces errors. These can, e.g., be noise, quantization errors, discretiza-
tion errors, image blur, but also compression artefacts.

• Illumination changes
Objects captured in the real world might be illuminated verydifferently. We have to deal with additive
(the basic brightness is higher), multiplicative (higher contrast) and non-linear (light source at a different
direction) illumination changes.
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Figure 3: Images form the semantic class VW beetle (from [5])

• Ratio image area/object area
The object might only cover a small part of the image, while background clutter or other objects dom-
inate the scene. This makes the recognition of these small objects very difficult, especially if we have
no a priori information about the scale of the object.

• Inadequacies of the mathematical model
When modelling is an issue, we usually have to make simplifying assumptions about some conditions,
in order to keep the problem manageable. In reality however,we might have different conditions, e.g.,
non linearities, non planarities or statisical dependencies where we assumed none.

• Semantic notion
Even if we only want to consider objects that share some optical characteristics, the amount of visual
resemblance can still vary. As human beings, we always have asemantic interpretation of what we see.
This fact is known form CBIR and called the “semantic gap”. In[55], (p. 1353) it is defined as:

“The semantic gap is the lack of coincidence between the information that one can extract from the
visual data and the interpretation that the same data have for a user in a given situation.”

How different images with the same semantic interpretation(here VW beetle) might look can be seen
in Figure 3. Not only the views and display details are different, but also the styles in which the pictures
are made. Here we rather deal with a semantic than with a visual object class.

As can be seen from the collection above, a variety of things has to be considered when the recognition of
visual object class members should be successful. In current systems, typically only certain aspects are worked
on, and the databases currently used make some simplifying assumptions, e.g., about the location, size and/or
orientation of the object. This is necessary in order to better control the effects of certain algorithms, but it
also restricts the portability of the results. However, more and more reference databases at greater levels of
difficulty exist. Some current databases are introduced in Section 3.2.
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3.2 Databases

This Section briefly introduces some databases at differentlevels of difficulty, which are widely used. For
these, a lot of reference results are available.

3.2.1 Caltech Datasets

The Californian Institute of Technology (Caltech) offers aset of image collections for object class recogni-
tion. They are available on the institutes website1. The most commonly used collections are “airplanesside”
(800 images), “faces” (450 images) and “motorbikesside” (800 images), others are the “cars rear” as well as
the “leaves” database, where the latter is comprised of 3 different leave types. For these database, an object
present/absent task has to be solved, specific training and test sets are available for better comparability of the
results. As a counter class, a set of mixed “background” images is used, except for the carsrear task, where
street backgrounds are provided. The individual objects differ in appearance and location, but are about the
same size and orientation. The background is cluttered.

faces

motorbikes

airplanes

leaves

background

For multi class object recognition, two other datasets are provided, the Caltech 101 and the Caltech 256 object
class database. There, images for 101/256 object classes are provided, with 40-800 images per category. The
images are all about the size of 300 x 200 pixels.

3.2.2 Graz Datasets

A clearly more difficult categorization task is present in the Graz02 database2 introduced by Opelt et al.
[51, 50]. This database has three object categories: “cars”(420), “persons” (311 images), “bikes” (365 im-
ages) and a so-called “none” category (380 images) which is used as a counter class. In all the categories,
objects suffer from severe occlusions and have a highly variable appearance and pose, reflecting real world

1http://www.robots.ox.ac.uk/˜vgg/data3.html
2http://www.emt.tugraz.at/˜pinz/data/GRAZ02
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scenes more accurately. Here also, an object present/absent task has to be solved.

bike

car

person

background

3.2.3 Eth80 Dataset

The ETH80 database3 was introduced by Leibe et al. in [30]. Here, 10 different objects from 8 different object
classes are photographed in front of a uniform background. For each object, 41 views are taken at different
angles. In the following graphic, all individual objects are shown in a refernce position. Tests are usually
performed in a leave-one-object-out approach.

apple

tomato

pear

cow

dog

horse

cup

car

3http://www.mis.informatik.tu-darmstadt.de/Research/Projects/categorization/download.html
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3.2.4 UIUC Cars

The UIUC cars database4 was first introduced by Agarwal et al. in [3]. It contains 1050training images (550
car and 500 non-car images) and 170 single-scale test imagesas well as 108 multi-scale test images. The
training images are quite small (100x40) and quite roughly quantized, the test images are a bit bigger and may
contain several cars. All images are in gray scale.

training cars

training background

test (single scale)

3.2.5 PASCAL Visual Object Class Challenge (2005/2006)

These benchmarks were proposed in 20055 and 20066 by the PASCAL (Pattern Analysis, Statistical modelling
and ComputationAl Learning) network. In both challenges, two different kinds of tasks had to be solved: one
was to predict the presence/absence of a class member in the test image, the second was to additionally draw
a bounding box around the recognized objects (localization). There are no extra background images, but all
other images from the database not containing the object form the counter class. In 2005, 4 object categories
had to be distinguished (motorbikes,bicycles,people,cars), in 2006 there were 10 object classes (bicycle, bus,
car, motorbike, cat, cow, dog, horse, sheep, person). For both challenges, many reference results are available.
The images in the individual categories of VOC2005 were partially taken from other databases (Caltech,
TuGraz, UIUC etc.), the VOC2006 data includes some images provided by Microsoft Research Cambridge
and ”flickr”.

4http://l2r.cs.uiuc.edu/ cogcomp/Data/Car/
5http://www.pascal-network.org/challenges/VOC/voc2005/index.html
6http://www.pascal-network.org/challenges/VOC/voc2006/index.html
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bus
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person

3.2.6 ImageCLEF2006 Object Annotation Task

This dataset is not as widely known as the previously described ones, and only two reference results exist. It
is a quite hard database with 21 classes (ashtrays, backpacks, balls, banknotes, benches, books, bottles, cal-
culators, cans, chairs, clocks, coins, computerequipment, cupsmugs, hifiequipment, knivesforks spoons,
mobilephones, plates, sofas, tables, wallets). The imagespresented should be automatically labelled with the
right key word, i.e. classified correctly. The database and further information is available here7.

3.2.7 MUSCLE Animal Images

Within the MUSCLE (Multimedia Understanding trough Semantics Computation and Learning) campaign,
a dataset consisting of different animal categories was produced. The initial version proved too difficult, so

7http://www-i6.informatik.rwth-aachen.de/ deselaers/imageclef06/nonmedaat.html
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a new database containing 262 images in 9 classes was released (cheetah, cougar, coyote, dear, goat, horse,
leopard, lion, tiger). Results with this database are to await.

4 Object Class Recognition Using Patches

A recently popular method to deal with object class recognition is to use local information extracted at various
points or areas in the image. Local patch based approaches have shown to have benefits over global methods:
they are capable of modelling the variability in object appearance as well as the shape and can cope with
occlusions. Both the kind of local information extracted (features) and the exact positions at which these are
acquired can differ tremendously in different methods.

Methods based on locally acquired features are named differently in literature. The most common notion
is “patch based” [63], however also the term “fragment based” [70], and sometimes “part based” is used.
However, the term “part based” is mainly related to more semantic entities, e.g. arms, legs, body and head for
a human being, where the first two are rather related to primitive extracts acquired from an image.

The use of local information has many advantages. We try to summarize them in the following list:

• Reduction of the amount of data to be processed
Typically, the number of points where local information is extracted is significantly less than the number
of pixels in the image. Information is either extracted at points “where something happens”, so called
“interest points” (see Section 4.2), a number of random points [39], points from a fixed size grid [12] or
combinations of these. Also, features can be extracted fromareas [53, 40].

• Avoidance of segmentation
The objects to be recognized do not have to be segmented priorto recognition, in contrast, some patch
based approaches even deliver a segmentation of the recognized objects [31].

• Robustness to background clutter
This item is related to “avoidance of segmentation”. When using local information, the classification
step should ideally only consider parts that have a strong indication for the object itself, information
from the background should be ignored ideally.

• Robustness to occlusion
In many real world scenes, objects to be recognized are partially occluded. Global methods that require,
e.g., the outline of an object, fail at this point. Patch based approaches have shown to cope well here,
since the local information acquired at one point is not affected by other, occluded parts of the object.

• Robustness to variability in object shape
When dealing with visual object classes, we have to cope withvariability in the object configuration.
Since the extraction of local information at one point is notaffected from object parts at other locations,
we gain robustness. We detach shape and appearance information, and can model them separately, as
already proposed by Fischler and Elschlager [20].

On the other hand, the use of local patch information has alsodisadvantages:

• Miss of relevant parts/structures of the image
When using an interest point/covariant region detector, there always is the danger that relevant parts of
the object are missed. Later stages, that rely on these partsare likely to fail then. This is especially
problematic if the interest point detector emits only few interest points, like the Harris/Hesse-Laplace
or the DoG detector (see Section 4.2).
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• Loss of spatial coherence of the parts
If the location where the patches were extracted gets discarded as, e.g., in the “bag of features” ap-
proaches (see Section 4.7), we loose information. Some parts might only be discriminative within a
geometric configuration.

These disadvantages have to be attenuated or canceled in order to achieve superior performance.

4.1 Basic Principles

Current patch based approaches for the recognition of visual object classes consist of several main steps, which
are depicted in Figure 4. This is basically the common pattern recognition scheme, where feature extraction
and learning is modelled in two steps.

• Determine location and area of feature extraction
Since our premise is to use local information, we first have todetermine where this local information
should be extracted. Section 4.2 deals with this in detail.

• Type of features to be extracted
A variety of features can be extracted from local areas. Ideally, they are robust to illumination changes
as well as noise and capture the properties of the area they are extracted from well. In Section 4.3, we
describe some feature extraction methods.

• Learning
In order to describe the object class, we have to learn what ischaracteristic for it. We present training
data to the system, either in a supervised, weakly supervised or unsupervised manner. Depending on
whether a discriminative or generative method is applied, we obtain an object model or a decision
function for the classification step. This step is where mostapproaches differ.

• Classification/Localization
New images presented to the system for classification typically undergo the same interest point/area and
feature extraction procedure as the training images. Then they are classified using the learned functions
or object models form the database. Here again a variety of different methods are available, ranging
from simple nearest neighbor techniques [12] to more advanced techniques like SVMs [72] or boosting
procedures [53].

• Validation/Tests
In order to judge the quality of the huge amount of procedurespresented, they must be tested. A
variety of benchmarks and reference databases exist, as could be seen in Section 3.2. Different standard
measures like ROC (Reciever Operator Statistics) curves, PR (Precision-Recall) graphs or EER (Equal
Error Rates) values can help to make the results more comparable.

4.2 Location of Feature Extraction

In literature, very diverse methods exist to determine where to extract features for object classification. Typi-
cally, features are extracted at so called interest points,however, the exact meaning of “interest point” differs
from author to author. So Agarwal et al. [3] defines them to be“points that have high information content in
terms of the local change in signal.”, Cordelia Schmid et al. [56] as“points where a signal changes two di-
mensionally”or Loupias et al. [36] just as“points where something happens in the signal at any resolution” .
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Figure 4: General scheme of object recognition using patches

Other authors like Reisert actually mean “specific part detectors” if they mention “interest point detectors”,
since they do not detect any part where something happens, but only parts that have specific properties.

Interest point detection has a long tradition in classic computer vision for finding point correspondences to
reconstruct 3D scenes from 2D views. There exist a lot of evaluation papers that try to judge the quality of
interest point detectors, e.g. [58, 57, 47, 45]. The evaluation criteria are mainly repeatability (i.e. robust-
ness against varying imaging conditions like viewpoint, scale, illumination changes) and information content.
Repeatability however, is not necessarily a suitable measure when dealing with different objects, since direct
point correspondences can not be established. Mikolaiczyket al. [41] also evaluated interest point detectors
(and features) in terms of object class recognition.

Scale invariance is also an issue if we deal with arbitrary images, so not only points, but rather areas like
boxes or circles should get extracted from the images. Methods to achieve robustness to scale changes include
finding function maxima in scale space [35] or the calculation of the entropy in an area [26].

Even affine distortions are considered by some detectors, they deliver ellipses [27, 43] or parallelograms [67].
These detectors are also referred to as “covariant region detectors”, since they change in a way consistent with
the image transformation, where as an “invariant detector”would remain unchanged if we consider the strict
meaning of the word.

Many authors, e.g. Mikolajczyk et al. [41] or Oplet et al. [51] suggest that different detectors should be used
complementary, as they have different properties (some detect edge like, some corner like structures), so more
information can be captured. Others like Deselaers et al. [12] state that the exact choice of the interest point
detector is not important, as long as enough interest pointsare extracted. Even very simple means for locating
interest points might be sufficient, e.g., just taking locations with high local grayvalue variance or entropy.
Maree and Geuts [39] even go further: they just use a sufficiently large number of random points.

Homogeneous regions also carry information that can be beneficial for object class recognition, and thus
some detectors search for regions with similar properties.The MSER detector (Maximally Stable Extremal
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Regions) [40] or the IBR detector (Intensity Based Regions)[68] are a examples for that. These regions might
have any form and are not restricted to a specific geometric layout.

In the following, we give a list of interest point/covariantregion detectors, to adumbrate the varietey of them:

1. (Classic) Interest point detectors

• Harris corner points [24]
• Förstner point detector [22]
• Wavelet based salient points [36]
• Complex filters (Marco)

2. Covariant region detectors

• Harris-Laplace/Harris-Affine [43]
• Hesse-Laplace/Hesse-Affine [43]
• MSER (Maximally Stable Extremal Regions) [40]
• Laplacian of Gaussian (LoG)

citeLindeberg1998
• Difference of Gaussian (DoG) [38]
• Intensity Based Regions (IBR) [68]
• Edge Based Regions (EBR) [68]
• Kadir & Bradey salient regions (based on entropy)[27]

3. Other approaches for interest point/region detection

• Random points [39]
• Grid (sparse, dense) [12]
• Gradient magnitude [46]

It is generally noticed that some feature detectors delivera very sparse representation, so that subsequent steps
in the object recognition chain may suffer from that. So typically, many feature detectors are run, not only to
get different types of interest points, but also to get more of them. Some authors also start to use exhaustive
sampling of the image now, e.g. Fergus et al. [19].

4.3 Types of Features

The pixel values can not be compared directly, since they might undergo the variety of transformations men-
tioned above. In order to describe image structures, so called “features” get extracted, that should be robust to
at least some of the imaging conditions.

Their complexity can vary from pure intensities (gray values) to sophisticated descriptors like SIFT (Scale
Invariant Feature Transform) [37]. As already described inSection 3.1, an image might suffer from several
imperfections like noise and non standard illumination. Features should either be robust against that or must
be normalized, e.g. by color normalization, illumination normalization or scale normalization techniques.
This is especially important for object class recognition from arbitrary images, since we have no knowledge
about the recording conditions.

In this work, we mainly deal with local features. They are calculated from a relatively small, bounded region,
that was acquired as described above. Global features on thecontrary involve the whole object or even the
entire image.
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A huge variety of different types of features have been proposed for object recognition and image retrieval.
Some of them were evaluated in [44]. As expected, different features are suitable for different tasks and
objects. Opelt et al. [53] even propose to calculate many different features and then let the classifier decide
which features to choose (boosting).

We just list some of the more commonly used:

1. Texture features
tamura texture features, wavelets, gabor filters, steerable filters, (invariant) moments, jet features, lo-
cal binary patterns (LBP), SIFT, SURF, GLOH, gray value invariants (monomial, relational kernels),
cooccurrence features, MSA, PCA-SIFT

2. Color/Intensity features
gray values (possibly dimensionally reduced: PCA, LDA, BDA), color histograms (important: color
space, illumination, color constancy)

3. Shape features
edge orientation histograms, line features, gradients (magnitude, orientation), shape context Fourier
descriptors

4. Others
gaussian derivative filters, differential invariants, complex filters, cross correlation of sampled pixel
values, spin images

4.4 Learning

Our goal is to determine whether an object is present in an image or not. In order to decide that, pattern
recognition offers two fundamentally different methods: generative or discriminative learning.

Generative methodslearn probabilistic object modelsP (input). For this, only the data of the current
class is necessary. Typically, distributions forP (object present) andP (object absent) are learned,
whereP (object absent) is build from arbitrary background images or images containing other objects.
For decision, typically a likelihood ratio test of the two choices is performed to classify new images.
When adding a new object category, the old ones are not affected.

Advantages of generative methods are that they can handle missing or partially labelled data and new
classes can be added easily. Moreover, they can handle compositionality, where standard discriminative
models need all possible object variations in order to learnthe decision function [71].

Discriminative methods a decision function is learned directly, i.e.P (class|input), e.g. by regres-
sion techniques. The decision function might be, e.g., be a parametric model, where the values of the
parameters are inferred from a set of labelled training data, such as a neural network or an SVM.

Advantages of discriminative methods are that they are usually very fast and are expected to be more
accurate than generative methods, since they optimize the decision function directly [71].

Learning methods also differ in the amount of supervision they need for training. Strongly supervised methods
typically need segmented objects or manual labels of specific object parts. If a huge variety of object classes
is to be learned, this is not desirable. Weakly supervised methods only require the class labels per image, not
where exactly the object is located. Unsupervised learningdoes not even require image labels.
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Since for discriminative methods, the goal is a direct minimization of the classification error, the performance
might be superior, however, when when training data is limited, generative approaches might be preferable,
as shown by Ng and Jordan [49].

Often, generative models and discriminative learning are intermixed, e.g. [4, 23], in order to benefit from the
two worlds.

4.5 Feature Sets

One important property of patch based approaches is that we do not have to deal with individual features
or feature vectors describing the object, but with feature sets, which require some further processing or the
modification of known pattern recognition techniques. For example, if we want to use an SVM on feature
sets, we need specific set kernels for that [72].

The features are typically not ordered in the sets, and direct correspondences between features of two images
can not be established easily. A lot of features in a particular set might be doubled, since they occur at many
places of the object/image, or superfluous/erroneous, since they come from the background.

The lack of correspondence between the features of images can be handled two fold:

Ignore the lack of correspondence: This leads to so called “bag of features” approaches, whichare
basically histograms of features. They show generally goodperformance, but localization can not be
done, since all spatial information is lost during histograming.

Identify and correspond features: In this approach, we are looking for specific “parts”. Hillel et al.
[4] define a part to be “an entity with a fixed role (probabilistically modelled)”. Parts can either be
something that corresponds to human perception like eyes, noses, wheels, more abstract pieces like an
arbor or any other pattern. Whenever supervised learning isdone, humans tend to identify semantic
parts, however they do not necessarily mean that they are themost discriminative ones. E.g., the hair
line is a good and stable part for the recognition of faces, however, people would not select this part
at first sight. The number and type of parts vary greatly for different approaches, e.g. Fergus [18]
constellation model has 3-7 parts where Agarwal et al. [2] use a codebook of 270 parts.

When we have detected specific object parts in an image, feature relations (mainly location and scale relations)
provide a powerful cue for classification. The problem here is to find discriminative and geoetrically stable
parts of the object reliably.

4.6 Clustering

A way to cope with the diversity and size of the feature sets isto cluster them, i.e. to group them according
to some criteria and then to use the cluster centers only. In this way, we gain robustness to small variations in
the patch. Typically, a similarity measure is applied for grouping the patches, e.g. (normalized) cross corre-
lation or a Minkowsky norm. This leads to a more abstract, soft description of parts. Instead of the features
themselves, the cluster means or some other representations are used for the different cluster members.

Clustering can also used as a mean for part selection [18]. When we cluster features from training images
all containing the object, we assume that clusters with patches originating from the object should be big,
where the background patches should end up in smaller clusters, since they should have arbitrary appearance.
However, this is only true when the object is photographed intotally diverse scenes. Usually, the background
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is also somehow similar (streets, office), so bigger clusters might as well be from the background. Maybe
this information still helps for classification, e.g., if wewant to discriminate cars on roads against office
backgrounds (or the similar), then the street patches wouldalso be discriminative (and it is to suspect that
exactly this is the case in many object recognition systems.

Clustering can be seen as unsupervised learning, since initially, no labelling of the data is done. Depending on
the clustering algorithm, we might obtain different clustering solutions, some of which might be more suitable
than others for object class recognition. Even for the same algorithm, the exact solution can differ, because of
random initialization and local minima.

There is a variety of different clustering algorithms, a good overview about them can be found in [64]. Cluster
algorithms used for object recognition mainly fall into oneof the two categories:

1. Hierarchical clustering

Divisive clustering The data is first regarded as a whole, then it is split consecutively in smaller
parts. Examples for that is e.g. the Linde-Buzo-Gray [34] algorithm. This approach is followed
by [12, 13] as an example.

Agglomerative clusteringHere, initially all data entries are regarded as single clusters, and they
are grouped with the most similar clusters in the following steps, until all data is grouped. This
procedure can be visualized by dendrograms. To obtain individual clusters, the tree is “cut”, so that
either a certain number of clusters emerge, or the similarity of the clusters is above some threshold.
A disadvantage of this approach is that very small clusters might occur, and this did not prove
useful for object class recognition. Moreover, we have to deal with large time (O(N2 log(N)))
and space (O(N2)) complexity. As an advantage, we get visually very compact clusters. Methods
falling into this category are applied, e.g., by [2, 29].

2. Clustering based on function optimization
Here, a functionJ gets minimized, e.g. the distance of the data entries to the cluster centers. Typically,
the number of clusters has to be given. How to select the idealnumber of clusters is not always clear. It is
commonly determined experimentally. Examples are k-meansand EM clustering. For our experiments,
clusters obtained by k-means were already well suited, theyperformed better than the agglomeratively
clustered ones for cluster membership histograms. [74, 61]use clustering techniques of this kind.

The clusters obtained in this way are referred to as “visual codebook” or “visual words”, depending on the
background of the authors. Again, different strategies canbe followed for the construction of the clusters: one
is to obtain very specific codebook entries that describe oneclass particularly well, an other is to obtain very
generic ones, so that the codebook might be used for many object classes. This leads to the question whether
there should exist specialized codebooks for each object class or if there are generic ones where clusters (i.e.
object parts) are shared by different object classes [66, 42]. Since clustering is usually very expensive, it
would be desirable to have one general codebook that can be used for all classes, so that the addition of a new
classes does not require new clustering in order to build a new dictionary or a complete rebuild of an existing
codebook.

Recently, Miklolajczyk et al. [42] introduced a new mixed clustering approach, where first k-means clustering
and then agglomerative clustering is performed in order to be able to deal with hundreds of thousands of
feature vectors.
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4.7 Object Geometry

The spatial layout of object parts is a powerful cue for recognition. Despite the fact that bag of word ap-
proaches often perform very well in two class object recognition tasks, the geometric relation of parts gives
beneficial hints, especially in a multi class setting. Bag ofword approaches perform well if the pure existence
of certain structures give a strong indication whether an object is present or not. However, an object is more
than the pure collection of parts, and some parts might become discriminative in a specific constellation only.
So it is useful to study how object geometry might be modelledand used for recognition.

One difficulty is that for 3D objects in the real world, the geometric configuration of parts and sometimes
even worse the parts visible might differ tremendously. Oneapproach is to restrict the modelling of object
geometry to a certain view and use several of them to recognize the object, an other one is to learn a true
3D model. Typically, the former approach is taken, where sometimes already transitions between views are
learend [65].

A vital part for treating structure is that specific parts have to be identified. These parts can be strong ones
with a semantic meaning like eyes, wheels and so on, or rathersoft ones like edges, bars, corners, that might
match at many positions, but where the distributions are known relative to an object reference point. Several
possibilities exitst to decide which object parts to choose:

• Selection of patches by hand, e.g. by clicking on them [6]
• Selection of patches by exhaustive search and test on a validation set [73]
• Selection of patches directly by a classifier [53, 16].
• No selection at all, maybe reduction of parts by clustering if applicable [2]

Popular methods modelling the geometry of objects are variants of the “star model”, i.e. object parts in relation
to a center point. Examples for this method are Leibe et al. [29], Fergus et al. [19] or Shotton et al. [59].
Another possibility is the “constellation model” [18] which models the joint probability of all parts to another.
This can be seen as a new variant of the “parts and structure” approach already proposed by Fischler and
Elschlager [20] in 1973, where objects are modelled as a collection of parts that are connected by springs.

5 Comparison of Systems

The recognition of visual object classes is a very active research field, and every year, a variety of new papers
dealing with this topic are published. We want to give a smalloverview about approaches that had great
impact on research in this area and describe current state ofthe art techniques.

The properties of most of these approaches are summarized inTable 1, classification error rates on standard
datasets are listed in Table 2, 3, 4 and 5.

In the following list, which is only comprised of a fraction of the published literature on this topic8, a huge
variety of different methods were proposed to deal with the task of visual object class recognition. Typically,
the systems make exhaustive use of machine learning techniques like EM, SVMs or Ada-boost, but also tra-
ditional Bayesian approaches are frequently used or intermixed. The approaches can be roughly divided into
methods using the geometric distribution of parts or neglecting them, or in generative as well as discrimina-
tive methods. Current research trends tend to combine several previously proposed methods, e.g. different
interest point detectors, different features or differentmatching strategies, which makes it difficult to judge

8the selcetion was based on what was considered to be important by the authors and may well be biased
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the overall performance of the individual components, since the interplay and the fine tuning of the different
parts becomes more and more important.

Burl, Weber, Perona [7] 1998

A Probabilistic Approach to Object Recognition Using LocalPhotometry and Global Geometry

Ipts: Manual selection of candidate parts, eyes, nosetip, mouth corners; correlation

Features: Dominant local orientation

Distance: Correlation

Classifier: Likelihood ratio

Part detection via matched filtering, then a probabilistic shape model is applied (joint probability of parts)
Translation, rotation and scale invariance is achieved by using relative positions to reference points.

Weber, Welling, Perona [74] 2000

Unsupervised Learning of Models for Recognition

Ipts: Förstner detector

Features: Gray values, gradients

Distance: Normalized correlation

Classifier: Likelihood ratio

Förstner interest points get extracted, then features calculated and clustered with k-means (100 clusters, only
features from the positive class are used). Clusters with less than 10 members are removed, also clusters that
are similar to others after a small shift. A number (3-7) of distinctive parts get selected, according to their
classification performance on a validation set. For classification, the joint probability density of the detected
part locations is evaluated.

Agarwal, Roth et al. [3, 2] 2002, 2004

Learning a Sparse, Part Based Object Representation

Ipts: Förstner detector, sqare patches 13x13 pixel

Features: Gray values

Distance: Normalized cross correlation

Classifier: SNOW (Sparse Network of Winnows)

Features are clustered in an image and the occurrence of cluster members at a specific spatial relationship is
coded in a binary vector. As a classifier, winnow are used. Forlocalization, a sliding Windows approach is
used to calculate a classifier activation map, i.e. the probabilities, that an object at a certain location is present.
Later, a multiscale approach was also proposed.
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Dorko, Schmid et al. [15, 16] 2003, 2005

Object Class Recognition Using Discriminative Local Features

Ipts: Kadir & Bradey, Harris-Laplace, Harris-affine, patches getnormalized (geometry, scale,
direction)

Features: SIFT

Distance: Gaussian Kernel Density

Classifier: Number of “activated” part classifiers above threshold

Extraction of scale and affine covariant parts, calculationof SIFT features, clustering of the features with
GMM, each Gaussian represents a cluster. Part classifiers are built (NN with Gaussian kernel density) and
discriminative parts are found with two criteria: classification likelihood or mutual information. For classifi-
cation, then most discriminative object parts are used and the final decision is done whether the number of
“activated” positive part classifiers is above a certain threshold, which is determined for each class.

Fergus, Perona, Zisserman [18] 2003

Object Class Recognition by Unsupervised Scale-InvariantLearning

Ipts: Kadir & Bradey detector

Features: Gray values, dimension PCA reduced (10D)

Distance: Gaussian

Classifier: Likelihood ratio

About 30 Kadir & Bradey regions get extracted and normalizedto 11x11 pixels. The approach is similar
to [74], however, here also the part appearance as well as therelative scale is modelled. All parameters
of the model are learned via EM, even the selection of parts. Ahypothesis vector assigns the detections
to the previously learned parts or marks them as hidden. Classification is done using the likelihood ratio
considering shape, appearance, scale and detector/occlusion statistics. Disadvantages are the long training
and classification times, since a huge number of parameters has to be learned and part mappings have to be
found. For this, all possible configurations of the detectedparts are evaluated.

Leibe, Schiele [31] 2003

Interleaved Object Categorization and Segmentation

Ipts: Harris detector

Features: Gray values

Distance: Normalized correlation

Classifier: Hough like voting scheme

A codebook of object parts is generated using agglomerativeclustering and normalized grayvalue correlation.
For each codebook entry and object class, probabilities forobject centers are calculated from a training set.
Segmentation masks are stored for each codebook entry. For classification, a hough like voting scheme is
applied, with that, probable object centers can be found. Using the backprojeckted hypothesis, a refined
sampling can be done to get an improved hypothesis. The images can also be segmented using previously
learned segmentation masks.
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Carbonetto, Dorko, Schmid [8] 2004

Bayesian Learning for Weakly Supervised Object Classification

Ipts: Harris-Laplace, Kadir & Bradey, LoG, DoG, Harris-affine, random selection

Features: SIFT

Distance: Gaussian kernel density

Classifier: Probit link classifier

This works deals with object class recognition as data association problem: features form training images may
contain the object or the background, task of the classifier is to reveal their affiliation. A probit link classifier
is used for each patch, the parameters are learned by a MCMC (Markov Chain Monte Carlo) algorithm. The
sum of the label probabilities for each patch in the image lead to a decision.

Leibe, Schiele [33, 32] 2004

Interleaved Object Categorization and Segmentation, Scale Invariant Object Categorization Using a
Scale-Adaptive Mean Shift Search

Ipts: Harris detector, DoG detector

Features: Gray values

Distance: Normalized Correlation

Classifier: Hough like voting scheme

Improvements to [31]: The use of MDL (Minimum Description Length) for multi object recognition, Mean
Shift search for fast maximum search in the Hough accumulator array and scale invariant interest point detec-
tion using the DoG detector.

Csurka, Dance, Fan, Willamowski [10] 2004

Visual Categorization with Bag of Keypoints

Ipts: Harris affine

Features: SIFT

Distance: SVM: linear kernel

Classifier: Naı̈ve Bayes, linear SVM

SIFT features get extracted at geometrically normalized Harris affine patches. These are then clustered using
k-means clustering and histograms of cluster memberships (“bag of keypoints”, “bag of words”). Classifi-
cation is done by Naı̈ve Bayes and SVMs, where the latter outperforms the former. All spatial relations are
ignored in this approach.
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Torralba, Murphy, Freeman [66] 2004

Sharing Features: Efficient Boosting Procedures for Multiclass Object Detection

Ipts: Exhaustive search

Features: Gray values templates (dimension 2000) and spatial masks

Classifier: Joint boosting

As features, 2000 random patches get extracted from training images of the 21 object classes together with
spatial masks. They are used as a kind of matched filter. For training, a “joint boosting” approach is proposed.
This means that from the pool of weak learners, the one is chosen that not only separates a single class from
the background best, but all the selected classes. This weaklearner is then added to the strong learners of the
selected subset. Results on both toy data as well as on real world images show that it is beneficial to use the
shared classifiers, which - in this case - corresponds to shared features, since one weak classifier means one
specific feature.

Bar-Hillel, Weinshall [4] 2004

Efficient Learning of Relational Object Class Models

Ipts: Kadir & Bradey detector

Features: Normalized grayvalues, DCT transformed, (15D)

Classifier: Boosting

In this approach, the appearance, location and scale of parts are considered. A Bayesian network is used to
learn the dependencies of part locations and part scales. Not all relations of parts are used to another, but
only to an object reference point. The models have an intermediate number of parts (60) and the parameters
are learned using boosting. For classification, the probability of the feature sets belonging to the class are
calculated over marginalization.

Opelt, Pinz, Fusenegger [50, 52, 53] 2004, 2005

Generic Object Recognition with Boosting

Ipts: Harris-Laplace, Harris-affine, DoG, regions acquired by “similarity measure segmenta-
tion”

Features: Diverse (subsampeled gray values, basic moments, invariant moments, SIFT, intensity
distributions and invariant moments for regions)

Distance: Diverse (Euclidean, Mahalanobis, etc.)

Classifier: Boosting

The rationale behind this approach is that the performance of individual detectors, descriptors and distance
measures might be category specific. So they should be all offered to the classifier which should select the best
combination. For this, a boosting framework is proposed. Not only interest point/region features are used, but
also segmented areas.
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Ulusoy, Bishop [71] 2005

Generative Versus Discriminative Methods for Object ClassRecognition

Ipts: DoG

Features: SIFT

Classifier: Discriminative: softmax model in a linear network, generative: Gaussian mixture model

The authors compare a discriminative and generative approach for object class recognition in a weakly super-
vised framework. Images are not classified directly, but thepatches in the image. Whenever a patch is labelled
to belong to an object class, the whole image gets this label and the object is regarded to be present. For the
generative model, they use Gaussian mixtures and learn the parameters with an EM-style algorithm, for the
generative model they use linear as well as non linear networks and a softmax model. The results are tested
using a cow/sheep database.

Sudderth, Torralba, Freeman, Willsky [62] 2005

Learning Hierarchical Models of Scenes, Objects, Parts

Ipts: Affine Covariant Regions (prob. Harris/Hesse-Affine, MSER)

Features: SIFT

Classifier: Maximum likelihood

Objects are modelled as a set of parts with an expected appearance and position, in an object centered coor-
dinate frame. The parameters of this model are learned via a Gibbs sampler, which uses a graphical model to
analytically average over many parameters. The approach only works for images with roughly aligned objects,
as in the Caltech 101 object database. In a nice graphic, specific parts and the distribution of their location in
the image is shown. The parts were obtained by getting about 30 parts per image and clustering them to 32
clusters. In the second part of the paper, a graphical model is used to also model the scene the object is in, but
this is rather sketched as an idea.

Fergus, Perona, Zisserman [19] 2005

A Sparse Object Category Model for Efficient Learning and Exhaustive Recognition

Ipts: Kadir & Bradey, multi-scale Harris, curves

Features: Normalized gradients, dimensions reduced via PCA

Classifier: Bayes (Likelihood ratio)

Basically, the constellation model of [18] gets improved from a speed point of view in that for the geometric
layout, not a full joint probability density is used any more. Instead, one specific landmark gets determined
and the geometric configuration depends only on this. The landmark is assumed always to be present (no
occlusion of this part). Also, 3 different types of detectors were used, besides the Kadir & Bradey detector
also the multiscale Harris and a curve detector (linked Canny edges, broken at bitangent points). Patches are
represented using normalized gradient intensity, the dimensions are reduced via PCA. The selection of parts
is again done using a validation set. For testing, exhaustive search is proposed: all PCA basis vectors get
convolved with the image for the first k PCA components, then for each model part an activation map can be
computed. However, this is again quite expensive.
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Deselaers, Keysers et al. [12, 13] 2005, 2006

Discriminative Training of Patch Cluster Histograms

Ipts: Loupias interest point detector + regular grid, squared patches at fixed and variable scale

Features: Gray values, PCA transformed

Distance: Euklidean distance, symmetric KLD

Classifier: Bayes with discriminative training

Features get clustered and histograms build from the cluster memberships. Using the histogram, a variety
of classification methods get tested, e.g. global patch search and voting, nearest neighbor, Naı̈ve Bayes,
generative single Gaussian and discriminative training. The last one gets identified best, as it weights the
feature clusters according to their discriminativity. In the second paper, the approach gets improved, i.e.
patches get extracted at various scales and brightness normalization is performed by removing the first PCA
coefficient of the gray value features. Also SVMs were testedas a classifier.

Mikolajczyk, Leibe, Schiele [42] 2006

Multiple Object Class Detection with a Generative Model

Ipts: Dense sampling at gradients, Laplacian scale selection

Features: SIFT features, dimension reduced to 40 via PCA

Classifier: Likelihood ratio

Features are calculated from all points in the image where the gradient magnitude is above a certain threshold.
The scale at these points gets determined via Laplacian scale selection according to [46]. For every feature,
a geometry term gets determined coding the distance and relative angle of the object center to the interest
point, according to the dominant gradient orientation and the scale of this interest point. SIFT features get
calculated at these areas and the dimension reduced to 40 viaPCA. A top-down bottom up clustering method is
applied: first, the data is partitioned using k-means, then for the individual clusters agglomerative clustering is
performed. A hierarchical tree structure for appearance clusters is build, which is used for efficient similarity
computation. Classification is done in Bayesian manner computing the likelihood ratio. This test is done
at local maxima of the likelihood function of the object being present. Some additional tests are applied to
determine whether objects of different classes share similar clusters or overlapping objects exist. In this way,
the location, scale and orientation of multiple objects canbe determined.
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Method # ipts/image clustering part select. scale inv. rot. inv. localization multiObj. geometry

Deselaers et al. [12] 1000+300 div. LBG, 512/4096 disc training no no no no no

Deselaers et al. [13] 500+300 div. LBG, 4096 disc. train yes, manual no no no no

Agarwal et al. [3, 2] 8 agglom., avg. link no yes, manual no yes no yes

Dorko et al. [15] 100-300 GMM LikRat/MuI yes, detector yes pre-step no no

Carbonetto et al. [8] 3x100 no MCMC yes, detector yes pre-step no no

Burl et al. [7] 5 no manual yes yes yes no yes

Weber et al. [74] 150 k-means(100) EM+valid no no yes no yes

Fergus et al. [18] 30 no EM+valid yes, detector no yes no yes

Fergus et al. [19] 60 no EM+valid yes, detector no yes yes yes

Leibe et al. [31, 33, 32] 8269/16 agglom, avg.link(2519) nein yes no yes yes yes

Opelt et al.[52, 53] many SIFT: k-means(100-300) boosting yes, detector no no no no

Csurka et al. [10] avg. 360 k-means (1000) no yes, detecor yes no no no

Mikolajczyk et al. [42] 2.5 · 105 k-means + agglom. no yes, detecor yes yes yes yes

Table 1: Summary of features for different systems
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