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Abstract

The calculation of local features at points of interest
is a vital part of many current image retrieval and ob-
ject detection systems. The wavelet-based interest point
detector by Loupias et al. was especially developed for
image retrieval applications. We show how the detector
can be extended by a Laplacian scale selection mech-
anism to provide scale information and compare it to
other state of the art detectors. The extended detector is
very well suited for visual object class recognition us-
ing feature cluster histograms. It discovers a variety of
image structures distributed over the entire image, and
the number of regions obtained can be adjusted easily.
These properties lead to superior performance, which
we confirmed by tests on a difficult animal categoriza-
tion problem.

1. Introduction

Current content based image retrieval (CBIR) and
object class recognition systems use local representa-
tions of objects. The advantage of this can easily be
seen: local representations can deal with variations in
object shape and partial occlusions. Since later steps in
the recognition chain heavily depend on the quality of
the region detection step, special care has to be taken.
Some detectors for example deliver a very sparse set
of points, so that large areas of an image are not cov-
ered. Many current approaches for CBIR or visual ob-
ject class recognition use histograms of feature clusters,
typically with some 1000s of dimensions. If only few
local features can be computed from an image, these
histograms are very sparse and recognition performance
might be spoiled. Nowak et al. [10] have shown that a
sufficient number of interest points is crucial for a bag-
of-features image classification.

The wavelet based interest point detector by Loupias
et al. [5] was developed in the context of CBIR. The
objective was to obtain sufficient interest points that do

not only detect image structures of a particular type, e.g.
corners, but any “visually meaningful” structure. More-
over, the points should not only be gathered in small
areas, but cover the whole image in order to represent
the entire content. However, the basic detector does not
provide any scale information, so features had to be ex-
tracted from fixed size windows around the point.

2. Related Work

Interest point detection has a long tradition in com-
puter vision for finding point correspondences in image
pairs to reconstruct 3D scenes from 2D views. Linde-
berg shows in [4] how scale information can be assigned
to different image structures using a scale space rep-
resentation. The principles described there have been
adopted for many current covariant region detectors,
e.g., the Difference of Gaussian (DoG) detector [6] or
the Harris-/Hessian-Laplace [8] detector. Our extension
can also be seen in this tradition. Alternative methods
for scale selection evaluate some stability criterion in-
side a region, e.g., the Salient Region detector by Kadir
& Bradey [3].

3. Wavelet Based Salient Points

The wavelet based salient point detector by Loupias
et al. [5] uses a Discrete Wavelet Transform (DWT) as a
tool for the multi resolution analysis of the image. The
image f is studied at a number of scales 2−j , j ∈ Z+.
The wavelet coefficients W2−j f are obtained as the con-
volution of the image with the wavelet function dilated
at scale 2−j . Wavelet coefficients with high absolute
value get traced over the scales. This is possible, since
wavelets with compact support are used and for each
coefficient, a region of support in the preceding decom-
position stage can be determined. From the set of ances-
tors, the one with the highest absolute value is chosen
and traced further. In the final stage, the gradient mag-
nitudes are used to disambiguate between the pixles.
The sum of all traced wavelet coefficients is used as the
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Figure 1. Left: tracing of wavelet coeffi-
cients.

saliency value for the final target pixel. In this way, each
pixel gets assigned a saliency value. The saliency value
describes how strong the image signal changes over the
different scales. The tracing procedure for a very small
wavelet transformed image (8 × 8 pixels) is depicted
schematically in figure 1. A sample saliency map can
be seen in figure 2. Bright pixels denote a high saliency
value. The saliency map can be thresholded or the M
most salient points selected. For a more detailed de-
scription of the original algorithm, please refer to [5].

4. Laplacian Scale Selection

4.1. General Principles

As formulated by [4], a general idea for scale selec-
tion is to build a linear scale space. A linear scale space
representation L : RN×R+ → R for an N -dimensional
signal f : RN → R is formally defined as the solution
of the diffusion equation

∂L

∂t
=

1
2

N∑
i=1

∂2L

∂xi∂xi
, (1)

with initial condition L(x; 0) = f(x). The parameter t,
which refers to “time” in the original diffusion equation
can be interpreted as “scale” in the context of images.

Alternatively, a linear scale space can be constructed
by convolving the image signal with Gaussian kernels
G of various width, i.e.

L(x; t) = G(x;
√

t) ∗ f(x), (2)

where the N -dimensional Gaussian kernel G : RN ×
R+ \ {0} → R is defined as

G(x, σ) =
1

(2πσ2)N/2
e−

xT x
2σ2 (3)

Figure 2. Image and resulting saliency
map.

Please note that in Lindebergs formulation, the mea-
sure of the scale is in units of variance, i.e. t = σ2, and
thus the parameter for the width of the Gaussian kernel
in equation (2) must be σ =

√
t.

In order to find interesting structures in the scale
space (i.e. blobs, corners, edges), various differential
expressions can be used. All derivative expressions
have to be normalized, because the amplitude of spa-
tial derivatives generally decreases over time. For this
purpose, Lindeberg introduces a normalized derivative
operator.

A kernel that has been shown to be particularly use-
ful is the Laplacian kernel. The normalized Laplacian
kernel for a two dimensional image is defined as

Lapt = t

(
∂2L(x; t)

∂x∂x
+

∂2L(x; t)
∂y∂y

)
(4)

with x = (x, y)T . Specific scales of image structures
can now be selected as maxima of the detection func-
tions in scale space. Since convolution and derivation
are commutative operations, we use Laplacian of Gaus-
sian (LoG) functions to create the scale space. Not only
the scale of blob like structures can be determined with
LoGs. For ideal step edges, we obtain an extremum
when the distance to an edge is equal to the scale fac-
tor of the Laplacian. In this way, the scale of arbitrary
image structures can be measured, either by their own
size (blobs) or by the distance to neighboring structures
(corners, edges).



4.2. Loupias-Laplace Detector

The original Loupias detector does not provide scale
information. Although the DWT uses a multi scale rep-
resentation of the image, it is not equivalent to a linear
scale space representation, since in the DWT, we are re-
stricted to orthogonal wavelets with compact support.
The Gaussian kernel as needed for a linear scale space
does not fulfill this condition. To still obtain scale in-
formation, we apply a LoG scale selection mechanism
to the points provided by the original detector. The al-
gorithm works as follows:

1. Apply the wavelet based interest point detector to
the image. Obtain a set of M candidate points
Sc = {s1, . . . , sM}, s = (x, y), by choosing the
M points with the largest saliency values.

2. For each point si ∈ Sc, build a scale space rep-
resentation by evaluating a LoG filter at different
scales tj .

3. For each point si, search for the maximum filter
response, and assign this tj as scale for the interest
point. If no maximum can be found, the interest
point is discarded or a default scale assigned.

It is also possible to allow multiple maxima, when
they are isolated within a certain scale range.

5 Evaluation

We compare the new detector to current state-of-the-
art detectors, in particular the DoG detector [6], the
Harris-Laplace detector [8], the Hessian-Laplace detec-
tor [8] and the Kadir & Bradey Salient Region detector
[3]. For these detectors, executable programs provided
by the authors were used, and the standard parameter
settings used. Moreover, we compared the results to
random detections in the image, in order to verify the
suitability of interest point detectors. We tested two
variants of the Loupias-Laplace detector. In the first
version, whenever no distinct scale could be determined
for a detection, the point was discarded (“Loupias-
Laplace stable”), in the other version a default radius
was used (“Loupias-Laplace all”). We also tested fea-
tures calculated from the original Loupias detector with
a fixed radius of 15 pixels (“Loupias fixed scale”). For
all interest point detectors, regions smaller than 5 pixels
were discarded, since we deem them to be too unstable
for feature extraction.

The database used for the following tests is a chal-
lenging set of 1300 animal pictures belonging to 14
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Figure 3. Percentage of single member
clusters for different cut values, they
show the diversity of the structures de-
tected.

animal classes. The animals in the pictures are pho-
tographed in diverse poses, sizes and in front of differ-
ent backgrounds. The database was proposed by the
MUSCLE initiative [2], and is a subset of the Corel
database.

For each type of interest point detector, three types of
features capturing different properties of a local struc-
ture were computed. For color, we used an HSV color
histogram with quantization factors 8×4×3. The local
shape of the patch was captured by a SIFT-like gradi-
ent location and direction histogram [6], here we used
a 3 × 3 grid for the locations and 6 orientations. To
capture texture information, we calculated the mean of
the wavelet coefficients corresponding to a detected re-
gion at the three largest scales and the three orientations.
A large value of such a feature means a rough texture,
a small value describes a smooth region. All features
were concatenated, so the altogether feature dimension
for each local area was 159.

Structure Variety A first test is concerned with the
variety of structures extracted from the detected regions.
It follows closely one proposed in [7]. Traditional inter-
est point detectors cover only a specific type of struc-
ture in an image, i.e., corners or blobs. In order to test
the variety of structures extracted, we test how the data
clusters in feature space. We use agglomerative cluster-
ing with pairwise average linking of features extracted
from 30000 random regions detected by a respective de-
tector type. In the process of clustering, a tree is build
by joining the clusters with the shortest distance. The
tree can then be “cut” at various levels in order to ob-



tain a different number of clusters. Since the detectors
deliver a different number of regions, and in order to be
comparable to the results given in [7], the trees were cut
at levels resulting in specific ratios of detections vs. the
number of clusters (i.e. 4, 7, 10, 15, 20). The test mea-
sures the percentage of clusters with just one member.
These represent distinct structures. The single cluster
ratio for the different detectors and cut values are listed
in figure 3.

We can see that the features extracted from Loupias-
Laplace regions are more diverse than features from
the Harris-Laplace or the DoG regions, since more sin-
gle member clusters exist. The Loupias-Laplace de-
tector does not only extract a specific image structure
(e.g. blobs), but a larger variety. As expected, the Lou-
pias detector without scale selection shows a higher sin-
gle cluster ratio than the detectors with scale selection.
Since the scale information of the local structures is not
considered, the regions obtained are more diverse. Re-
gions extracted from random areas are very distinct. For
these structures, it is difficult to find a compact repre-
sentation.

Animal Image Categorization Our actual goal is to
use the detector in an object classification task in a bag-
of-features [1] classification approach. For histogram
creation, codebooks with 4000 visual words were ob-
tained via agglomerative clustering. The histograms are
classified with a standard multi class SVM with an his-
togram intersection (HI) kernel in a one-vs-one mode.
The results were obtained using five-fold cross valida-
tion. Other kernels were tested as well but were found
less suitable compared to the HI kernel.

A nice property of the Loupias-Laplace detector is
the fact that the number of points retrieved can be con-
trolled easily by considering the M most salient points.
The quality of the histograms obtained from the local
features does not only depend on the type of the de-
tected structures, but also on the number of them. Few
detections result in very sparse histograms that can be
unstable. Some of the standard detectors deliver very
few regions, because they only focus on a certain type
of structure. Changing thresholds there changes to what
extent structures are considered to be of the desired
type, but only within a certain range.

We evaluated the classification performance for the
different detectors in relation to the average number
of regions detected in the images. For the Harris-
Laplace, the Hessian-Laplace and the Salient Region
detector, we used the standard parameter setting as well
as the lowest threshold we could tune, resulting in an
increased number of detections. For the other detec-
tors, the number of regions considered per image was
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Figure 4. Classification results for the dif-
ferent detectors, depending on the num-
ber of interest points obtained.

adjusted to 200, 500, 1000, 1500 and 2000. As a base-
line, we also computed global features as above from
the entire image and used the concatenated feature vec-
tor directly for classification.

Classification results can be seen from figure 4.
The best results could be obtained using the Loupias-
Laplace all detector. Generally speaking, an increased
number of detections results in more stable histograms
and thus better classification rates. At about 1000-
1500 detections, a saturation in the performance occurs.
The DoG detector mainly delivered very small regions.
Even after scaling them by a factor of 2, only few re-
gions could pass the the required minimum radius of
5 pixels to be considered. The Harris-Laplace detector
provides comparatively few regions for this type of im-
ages, still after adjusting the threshold. An interesting
observation is that a large number of random regions
could even outperform some of the sophisticated detec-
tors. This observation is consistent with the results of
[10]. There, they report superior classification results
for a sufficient number of random detections compared
to the LoG and the Harris-Laplace detector.

Incorporating context information in the from of
background detections improves the classification rate.
The reason is that the background and the animal class
are of course somewhat related. This explains the rise in
performance between the Loupias-Laplace stable, and
the Loupias-Laplace all detector. Regions where the
scale selection mechanism fails and thus are neglected
by the first detector are mainly uniform regions of the
background. It also explains the comparatively well
performance of the original Loupias detector with a fix
scale. There, no areas are discarded. The usefulness



of scale selection is demonstrated by the fact that for
all numbers of detections, the results for the Loupias-
Laplace all detector is better than the Loupias detector
with a fixed radius.

6. Conclusions

In this work, we extended the wavelet based interest
point detector by Loupias et al. by a Laplacian scale se-
lection mechanism and compared it thoroughly to other
state-of-the art detectors.

For visual object classification, the Loupias-Laplace
detector is very well suited. It detects a variety of im-
age structures beneficial for classification. The detector
has the advantage that the number of retrieved points
can be controlled in a straightforward way by taking the
M most salient points, and these M points are usually
spread out over the whole image. Especially for bag-of-
feature type recognition algorithms, a sufficient number
of interest points is necessary, and they should cover
various “interesting” structures in an image. An alterna-
tive would only be to run multiple detector types, how-
ever, at increased cost. As demonstrated, our detector
on its own is sufficient to retrieve a variety of suitable
structures.
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