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Abstract. Camera calibration is a central task in a lot of computer
vision related problems. There are many different approaches, spanning
from expensive calibration bodies to printed checkerboards. The goal of
this work was to design a custom calibration body and algorithm pro-
viding a more intuitive and robust way of automatically calibrating a set
of cameras in a scene. Compared to the classical and tedious procedure
using multiple shots of a single checkerboard pattern this gives a com-
bined way of getting internal and external camera parameters with just
a simple, one-off setup. To optimize the bundle adjustment step a variety
of reprojection error measures are proposed and compared on computer
generated test scenes as well as real world examples. As a result this gives
a general impression of how closely we can calibrate a multi-camera setup
using the proposed calibration body.
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1 Overview

The here proposed methods seek to find a robust way of calibrating multiple
cameras to the same world coordinate system using bundle adjustment. Three
calibration bodies as seen in the example images in figure 1 are used that allow
for automatic camera pose estimation as well as calculation of the internal pa-
rameters. For the algorithms to perform best each camera should see as many
differently oriented faces of the calibration objects as possible. There must be
no camera seeing no face in common with any other camera.

Fig. 1: The three calibration bodies, each consisting of 18 checkerboards in different
orientations. The checkerboards facing down can be used in setups where the bodies
are placed on a glass pane with cameras filming from below.

The first step is the checkerboard detection. Chapter 2 gives an overview
of the used method described by Geiger et al [1]. To get initial values for the
internal parameters the differently orientated checkerboards are treated as pla-
nar calibration objects. All checkerboards are color coded in order to uniquely
find correspondences among the cameras. This is key to calculate egomotion be-
tween two viewing positions and therefore absolute external camera parameters.
Chapter 3 holds everything needed to get an initial representation of the scene.
However, the main focus of this paper lies in finding different bundle adjustment
variations that better suite our calibration bodies and therefore outperform the
classic approach in most cases. Section 4 explains these ideas.

2 Checkerboard Detection

The proposed method uses the checkerboard detector by Geiger et al [1]. The
two main tasks are finding corner points and assembling them to a grid which is
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assigning them their respective x and y label on the checkerboard. The following
chapters give a brief summary. More detailed information can be found in the
corresponding paper.

2.1 Finding Corners

The input image is first convolved with different types of corner kernels (see
figure 2). To get the corner likelihood c at a given pixel position one has to
look at all its kernel responses f iX with X ∈ {A,B,C,D} being the kernel and
i ∈ {1, 2} being the prototype.

c = max(s11, s
1
2, s

2
1, s

2
2)

si1 = min(min(f iA, f
i
B)− µ, µ−min(f iC , f

i
D))

si2 = min(µ−min(f iA, f
i
B),min(f iC , f

i
D)− µ)

µ = 0.25(f iA + f iB + f iC + f iD)

Fig. 2: A checkerboard section convolved using different corner detection kernels. The
kernel responses yield a corner likelihood c as seen in the image.

This is done for every pixel of the input image. To get the final corner can-
didates non-maximum suppression is performed [5]. In order to further sort out
non-corners a 32 bin orientation histogram is generated from Sobel filter re-
sponses around a n×n neighborhood of a candidate. We calculate its two dom-
inant modes α1 and α2 using mean shift [6]. The two edge orientations of a
checkerboard corner can directly be inferred from them. We draw a patch of
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what the neighborhood’s gradient magnitudes would look like if there really was
a checkerboard with found edge orientations at the given position. The normal-
ized cross correlation between the encountered neighborhood and our predicted
one is multiplied by the previous score c to give us a final likelihood. By thresh-
olding we try to get rid of as many false positives as possible. See figure 3 for an
example picture.

Fig. 3: A rather extreme example of a lot of possible checkerboard corner candidates
due to a very structured background. The red lines indicate the two possible edge
orientations resulting from the two dominant modes of the orientation histogram of
sobel filter responses. The top image is before thresholding the calculated normalized
cross correlation and the bottom one after.

To achieve sub-pixel accuracy of a corner position p ∈ R2 we look at the
gradients in the 11 × 11 neighborhood. Only pixels lying on an edge of the
pattern yield a strong gradient. Their direction is orthogonal to the direction in
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which this pixel is located relative to our detected corner position p. This leads
to the following minimization problem with gn being the gradient vector of a
pixel n in the neighborhood N around p:

p = arg min
p′

∑
n∈N(p′)

(gTn (n− p′))2

The solution can directly be calculated as follows [1]:

p = (
∑
n∈N

gngTn )−1
∑
n∈N

(gngTn )n

2.2 Assembling the Grid

The algorithm from the previous chapter gives corner positions and their edge
orientations. To assemble them a slightly different approach to Geiger’s method
is used. The markers of our calibration body form 3× 3 grids. Let τ be the set
of all row and column triples. Each assembled grid can then be given a score
represented by the Energy E:

E = max
(i,j,k)∈τ

||ci + ck − 2cj ||2
||ci − ck||2

The numerator becomes zero if the grid is perfectly square. Because of the de-
nominator bigger grids are allowed to be less square than smaller ones. The lower
the score the better the assembled grid.

To compose the grid we randomly select a seed corner and try to find the
corresponding grid neighbors:

1. Find the four direct neighbors to the seed corner: Search the set of
all corners for candidates along the seed’s edge directions. Found neighbors
are thresholded using their deviation to the edge direction and their distance
to the seed (candidates too far away get rejected). Choose the neighborhood
corners that best fit the edge direction of the central checkerboard corner.
Abort if at least one of the four neighbors can’t be determined this way.

2. Find the cornerstones of the grid: The previous step assembled the cen-
tral cross structure of the grid. To determine the missing four cornerstones
we look at the respective two tips of the cross that form their direct neigh-
bors. We search the set the same way we did the step before only this time
a candidate must satisfy the deviation and distance threshold for both its
neighbors. If all four cornerstones were found the 3× 3 grid now is complete
and each member is labeled according to its x and y position in the grid.

3. Reading the color code: Having the grid assembled we can determine the
angle and distance from the cornerstones in which we need to sample the
image to get the color codes. The angle results from the edge directions and
the distance is approximately two thirds of the grid spacing.
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4. Rotate the assigned grid labels: Assume two cameras see the same
checkerboard. For the algorithms coming up it is necessary that the de-
tections in their two images have the same rotation of labels. In practice
this means that the corner assigned to e.g. grid position (0, 0) should refer
to the same physical corner on the calibration body for both camera frames.
We use our color codes to rotate the grid assignments in a unique way. Each
color is converted to HSV color space. We flip and rotate the grid labels until
(0, 0) is the black corner and the hue of (2, 0) is smaller than (0, 2).

Figure 4 visualizes these four steps. Repeat for every corner as the starting
seed. In case we assembled overlapping checkerboards check for grids that share
at least one corner and keep only the one with the best score. Figure 5 is an
example of a fully labeled image.

start step 1 step 2 step 3 step 4

Fig. 4: The steps to assemble the checkerboard. The algorithm starts out on all checker-
board corner detections and a chosen seed corner (start). The first step then is to find
the seed’s direct neighbors along its edge directions. In order to determine the cor-
nerstones (step 2) of the sought 3 × 3 grid we search the set for detections satisfying
the edge directions of their two neighbors. If all of these steps finished succesfully the
grid is complete and we detect the color coding (step 3) and label the detections in a
unique rotation (step 4). If step 1 or 2 fails the chosen seed was not a grid’s center and
we abort. Repeat this procedure until every corner detection was once tested as a seed
and collect all resulting grids.

3 Initial Camera Calibration and World Reconstruction

Before any bundle adjustment can be done we need to have an initial camera
calibration and an initial point cloud representing the calibration bodies. Since
the problem is nonlinear a good initialization is crucial. To estimate the inter-
nal camera parameters we use the detected checkerboards as planar calibration
objects. For each camera we can calculate a relative position to a seen checker-
board. Starting with an arbitrary camera as reference all other cameras can
be added to the same coordinate system by iteratively adding those that share
a seen checkerboard. Pairs of cameras are used to triangulate newly exposed
calibration body faces.
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Fig. 5: Detected checkerboards with their respective color codings uniquely rotated.
The white crosses are drawn along the estimated edge directions of the checkerboard
corner.

3.1 Camera Parameters

The projection of a 3D point X in world coordinates to its 2D image coordinates
x as seen in a camera’s image is defined by the projection matrix P consisting of
the internal camera matrix K and the external camera matrix M . Coordinates
are given in homogeneous form.

x = PX

P = KM =

αx s x0 0
0 αy y0 0
0 0 1 0



r1,1 r1,2 r1,3 t1
r2,1 r2,2 r2,3 t2
r3,1 r3,2 r3,3 t3
0 0 0 1


M represents the camera’s external parameters namely world position and rota-
tion. It rotates the world such that the camera lies in the coordinate center. K
holds the camera’s internal parameters. Focal length αx and αy, principal point(
x0
y0

)
and skew s.

To estimate K the detected checkerboards are used as planar calibration
objects. Since they are all identical in shape every detection can be seen as the
same calibration object in different orientations. The projection of such a planar
object to the image can be described by a homography. Having multiple instances
in different orientations then yields a system of equations which can ultimately
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be decomposed to get to the internal camera matrix K. For more details see
[2]. In the implementation the camera calibration functions of OpenCV version
2.4.9 were used. It is assumed that αx = αy and s = 0.

3.2 Camera Poses and Triangulation

To generate an initial setup for the bundle adjustment a combination of relative
and absolute camera pose estimations as well as point triangulations are neces-
sary. Before briefly going through them a few words about the implementation.
The program run in the experiments uses OpenGV as a library for these geo-
metric problems. The point correspondences are represented as bearing vectors.
A bearing vector is a 3D unit vector pointing to a seen 3D world point in camera
coordinates. Let xu be the operation to normalize a vector x by its length:

xu :=

{
x
‖x‖ x 6= 0

0 x = 0

Conversion of an image point p =
(
px py

)T
to its bearing vector v =

(
vx vy vz

)T
given the camera’s focal length f and principal point c =

(
x0 y0

)T
is then done

as follows:

v =

px − x0py − y0
f


u

Relative Camera Pose Relative pose between two cameras can be extracted
from the 3 × 3 essential matrix E. For homogeneous point correspondences q
and q′ and estimations of the internal camera matrices K and K ′ it is defined
as follows:

q̂ = K−1q

q̂′ = K ′−1q′

q̂′
T
Eq̂ = 0

E holds the relative rotation R and relative translation t between the two cam-
eras:

E = R[t]x, with [t]x =

 0 −tz ty
tz 0 −tx
−ty tx 0


The challenging part is to get the essential matrix from a set of point correspon-
dences. Once found R and t can be extracted using singular value decomposition
on E. Different approaches have been made mostly named after the minimum
number of required correspondences. We use the five point method proposed by
Stewenius et al. [3].
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Absolute Camera Pose Absolute camera position can be calculated using
2D-3D point correspondences given the camera’s internal parameters. The idea
is to find the 3D reference points’ position in camera coordinates and then re-
trieving the camera pose by aligning the two point clouds. The here used method
introduced by Lepetit et al [4] expresses the 3D reference points pi using four
control points c1,...,4. One control point is placed in the center of the references,
the others should be placed so they form a basis aligned with the principal
directions.

Points in world coordinates have the superscript w and in camera coordinates
the superscript c. Every pi is then defined by its weights αij , j ∈ {1, ..., 4}:

pwi =

4∑
j=1

αijc
w
j , with

4∑
j=1

αij = 1

Knowing the control points in camera coordinates ccj we can also write:

pci =

4∑
j=1

αijc
c
j

With the internal camera matrix K and the 2D projections u1,...,n of the refer-
ence points p1,...,n the projection becomes:

∀i, wi
[

ui
1

]
= Kpci = K

4∑
j=1

αijc
c
j

With ui =
(
ui vi

)T
and ccj =

(
xcj y

c
j z

c
j

)T
this reads:

∀i, wi

uivi
1

 =

f 0 x0
0 f y0
0 0 1

 4∑
j=1

αij

xcjycj
zcj


From the last row it directly follows that wi =

∑4
j=1 αijz

c
j leaving two equations

per reference point:

4∑
j=1

αijfx
c
j + αij(x0 − ui)zcj (1)

4∑
j=1

αijfy
c
j + αij(y0 − vi)zcj (2)

Collecting these for each reference point we get the equation:

Mx = 0

with x =
[
ccT1 , ccT2 , ccT3 , ccT4

]T
and M being the 2n×12 matrix obtained from

the equations 1 and 2 for each reference point. We see that the problem has been
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reduced to finding the 12 unknowns which are the four control points in camera
coordinates. Now x can be constructed by a weighted sum of the eigenvectors of
MTM which is a matrix of size 12 × 12. The weights are calculated by solving
a constant number of quadratic equations. For further details see [4].

Triangulation Given point correspondences x and x’ and the full projection
matrices P and P ′ constructed from the internal camera matrices and the cam-
eras’ absolute world positions it holds for homogeneous coordinates:

x× (PX) = 0

x’× (P ′X) = 0

With x =
(
x y z

)T
and P =

[
p1, p2, p3

]
this yields three equations:

x(pT3 X)− (pT1 X) = 0

y(pT3 X)− (pT2 X) = 0

x(pT2 X)− y(pT1 X) = 0

Only two of them are linearly independent and we get the linear equation system:
xpT3 − pT1
ypT3 − pT2
x′p’T3 − p’T1
y′p’T3 − p’T2

X = 0

Solving for X gives the constructed point in world coordinates.

3.3 Reconstructing the World

To position multiple cameras and triangulated points in a common world coor-
dinate system we make use of the methods from the previous chapter. The color
codes of the markers uniquely identify the different calibration body faces. To
check whether two detected checkerboards belong to the same physical face of
the calibration body we compare the hue values in order to be robust against
brightness and contrast changes. If the hue differences of all of the four colors fall
below a given threshold we assume the same checkerboard is observed and the
corner positions can be used as point correspondences to the pose estimations
and triangulations.

1. Initial camera pair: We start off by selecting the pair of cameras which
see the most checkerboards in common. Their point correspondences are
used to calculate the relative pose between them. Setting the coordinate
system of one camera as the world coordinate system the relative pose of
the other camera directly leads to its absolute pose in this newly defined
world frame. Again the point correspondences are used to now triangulate
the seen checkerboard corners resulting in points that are also in common
world coordinates. The two cameras and checkerboard points start off the
reconstructed world.
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2. Iteratively adding the remaining cameras: Loop over the remaining
cameras and check against every already positioned camera counting their
commonly seen checkerboards. Choose the pair (c, c′) seeing the most checker-
boards in common with c being a known camera and c′ a yet to be positioned
camera. Like in the previous step first calculate the relative position between
c and c′ using the correspondences and then triangulate the checkerboard
corners. Make sure to calculate position and rotation of c′ in camera coor-
dinates of c (not the other way around). This positions c′ and the checker-
board points as seen from c. To get their world coordinates transform them
using the external parameters of camera c. Add c′ and all newly triangu-
lated checkerboards to the reconstructed world. Repeat until all cameras are
placed.

These two steps result in an initial world reconstruction with all cameras and
triangulated checkerboards ready to be bundle adjusted.

Fig. 6: The world reconstructed step by step. We start off with two cameras and
iteratively add the remaining ones while triangulating newly discovered faces of the
calibration object.
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4 Bundle Adjustment

Fig. 7: The input to bundle adjustment: An initual guess for camera positions and
world point reconstructions.

Given a set of cameras and world objects bundle adjustment minimizes the
reprojection error of world points projected to the camera images by optimizing
the cameras’ internal and external parameters as well as world point positions.
All calculations are done in homogeneous coordinates.

Let Xj be the j-th reconstructed point in world coordinates:

Xj =


xj
yj
zj
1


With f i, xi0, y

i
0,R

i, ti being the i-th camera’s internal and external parame-
ters as seen in chapter 3.1 the projection of a world point Xj to the camera’s
image can be defined as function π:

π(f i, xi0, y
i
0,R

i, ti, κi1, κ
i
2,Xj) = δ

(f i 0 xi0 0
0 f i yi0 0
0 0 1 0

[Ri ti

0 1

]
Xj , κi1, κ

i
2

)

Here δ(x, κi1, κ
i
2) is the camera’s radial distortion according to its distortion

coefficients κi1 and κi2.
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Let r(x, xi0, y
i
0) be the distance of x = (x, y, w)T to the camera’s principal

point (xi0, y
i
0)T :

r(x, xi0, y
i
0) =

√
(x/w − xi0)2 + (y/w − yi0)2)

The radial distortion then is defined as:

δ(x, κi1, κ
i
2) =

(
x/w + (x/w − xi0)(κ1r(x, x

i
0, y

i
0) + κ2r(x, x

i
0, y

i
0)2)

y/w + (y/w − yi0)(κ1r(x, x
i
0, y

i
0) + κ2r(x, x

i
0, y

i
0)2)

)
The final minimization term is defined as the sum of the squared euclidean

distances of all j world points reprojected to their corresponding detections in
the images of all i cameras. Let Xj be the reconstructed world point and xij be
the image position of its detection in the i-th camera’s image (assuming that the
camera sees it):

min
fi,xi

0,y
i
0,R

i,ti,κi
1,κ

i
2,Xj

∑
i,j

d2(π(f i, xi0, y
i
0,R

i, ti, κi1, κ
i
2,Xj),x

i
j)

In the experiments this is called the simple bundle adjustment since it’s
the bare minimum and holds no further constraints to world point positions or
camera parameters. Everything can be altered independently.

4.1 Principal point prior

Since we’re expecting the principal point (xi0, y
i
0)T to be roughly in the image

center the first bundle adjustment improvement is to add the following residual
for every camera i with W and H being the image width and height and ρ the
weight for the prior:

ρ
∑
i

(√
(xi0 −W/2)2 + (yi0 −H/2)2)

)2
= ρ

∑
i

d2

((
xi0
yio

)
,

(
W/2
H/2

))
Our minimization term now reads:

min
fi,xi

0,y
i
0,R

i,ti,κi
1,κ

i
2,Xj

∑
i,j

d2(π,xij) + ρ
∑
i

d2

((
xi0
yio

)
,

(
W/2
H/2

))
The experiments show that this improvement alone already results in much

better calibration since bad local minima with unrealistic principal points are
avoided. This minimization term is added to all proposed methods.

4.2 Energy of the checkerboard detection

In the checkerboard detection we achieved sub-pixel accuracy for the detections
p by minimizing the following term (see chapter 2.1):

p = arg min
p’

∑
n∈N(p’)

(gTn (n− p’))2 (3)



Fully automatic calibration of multiple cameras 13

Interpreting this as an energy function we can use it as our residual in the
minimization problem instead of the euclidean distance. To make this feasable
in an optimization algorithm we need to break down the sum.

Let N(p) be the neighborhood around the detected checkerboard corner in
the camera’s image. With gTn again being the gradients the new distance measure
for the corresponding reprojected point x then becomes:

d(x) =
∑

n∈N(p)

(gTn (n− x))2

Instead of using absolute reprojected pixel positions x let’s consider positions x̂
relative to the corresponding detection p:

x̂ = x− p

d∗(x̂) = d(x̂ + p)

Now d∗ is a two dimensional quadratic function with x̂ = 0 being its unique
minimum (because of equation 3). These types of functions can be written as:

d∗(x̂) = x̂TAx̂ + c, with A ∈ R2×2

A is symmetric and positive definite. Therefore:

A =

(
a1 a0
a0 a2

)
To determine A we look at some special evaluations of function d∗:

d∗(

(
0
0

)
) = c

d∗(

(
1
0

)
) =

(
1
0

)T (
a1 a0
a0 a2

)(
1
0

)
+ c = a1 + c

d∗(

(
0
1

)
) =

(
0
1

)T (
a1 a0
a0 a2

)(
0
1

)
+ c = a2 + c

d∗(

(
1
1

)
) =

(
1
1

)T (
a1 a0
a0 a2

)(
1
1

)
+ c = 2a0 + a1 + a2 + c

d∗(

(
1
−1

)
) =

(
1
−1

)T (
a1 a0
a0 a2

)(
1
−1

)
+ c = −2a0 + a1 + a2 + c

⇒ c = d∗(

(
0
0

)
)

a1 = d∗(

(
1
0

)
)− d∗(

(
0
0

)
)

a2 = d∗(

(
0
1

)
)− d∗(

(
0
0

)
)

a0 =
1

4
(d∗(

(
1
1

)
)− d∗(

(
1
−1

)
))
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Now that we know how to calculate A we can simplify the calculation of
d(x):

d(x) = d(x− p + p) = d(x̂ + p) = d∗(x̂) = x̂TAx̂ + c

Since c is a constant we can ignore it in the new minimization equation:

min
fi,xi

0,y
i
0,R

i,ti,κi
1,κ

i
2,Xj

∑
i,j

(π − xij)
TA(π − xij)

The simple bundle adjustment yields linear costs for deviations no matter in
which direction (the squared euclidean distance). Now this new equation weighs
them differently according to how well the reprojection fits to the structure of
the checkerboard.

4.3 Bivariate gaussian distribution

Especially with noisy input images we have to take into account that detec-
tions aren’t always spot on. Looking at figure 8 we assume that the detected
checkerboard corner (marked in red) is more accurate in its position along the
wider edge angle (here roughly along the image’s y-axis) than it is along the
sharper one (the images x-axis). To account for this observation we construct a
bivariate gaussian distribution (marked in blue) with the two main axes along
the angle bisections of the edge directions and variances proportional to the
angle between the edge vectors. It is then used as the covariance matrix in a
mahalanobis distance measure.

Fig. 8: Constructing a bivariate gaussian distribution along the detected checkerboard
edges.

Writing the sought distribution Σ in terms of its eigendecomposition we get:

Σ = UΛUT =
(
u1 u2

)(λ1 0
0 λ2

)(
u1 u2

)T
The two eigenvectors u1 and u2 correspond to the two main axes of the distribu-
tion and the eigenvalues λ1 and λ2 represent the variances along them. We set



Fully automatic calibration of multiple cameras 15

u1 to be the bisection of the smaller angle α and u2 the bisection of the bigger
angle between the checkerboard edges:

Σ =
(
u1 u2

)(1/sin(α) 0
0 sin(α)

)(
u1 u2

)T
The minimization equation becomes the mahalanobis distance using Σ as

the covariance:

min
fi,xi

0,y
i
0,R

i,ti,κi
1,κ

i
2,Xj

∑
i,j

(π − xij)
TΣ−1(π − xij)

Note that if the checkerboard perfectly faces the camera (α = 90◦) Σ becomes
the identity and the equation breaks down to the squared euclidean distance just
like in the simple bundle adjustment.

4.4 Parameterized Bundle Adjustment

Our calibration bodies consist of checkerboards formed by a grid of three by
three checkerboard corners. The detection algorithm from chapter 2.2 assembled
these grids for us. Instead of moving single world points independently the op-
timization algorithm now alters translation and rotation of a grid as a whole.
The basic idea is to describe a checkerboard grid by rotating and translating a
grid prototype. We use the point cloud fitting algorithm by Arun et al [7] to get
these transformations.

For each world point Xj let col(Xj) ∈ {0, 1, 2} and row(Xj) ∈ {0, 1, 2}
be its column and row position inside the assembled checkerboard grid. The
function l(Xj) then maps each point to the following 3D prototype position in
homogeneous coordinates. This basically is the label the detection got assigned
in chapter 2.2 (see figure 4, step 4):

l(Xj) =


col(Xj)
row(Xj)

0
1


For each checkerboard cloud G = {X1, ...,X9} construct its prototype cloud
Gp = {l(X1), ..., l(X9)} and calculate the rotation R and translation t between
them [7]. Working with homogeneous coordinates this gives us a rigid body
transformation C =

[
R, t

]
for every board.

Let C0, ..,Cn be these calculated poses for all n checkerboards and c(Xj) ∈
{0, ..., n} the mapping assigning a world point Xj to the checkerboard it belongs
to.

Starting with the simple bundle adjustment equation we substitute Xj with
Cc(Xj)l(Xj) and the minimization problem becomes:

min
fi,xi

0,y
i
0,R

i,ti,κi
1,κ

i
2,Cc(Xj)

∑
i,j

d2

(
π
(
f i, xi0, y

i
0,R

i, ti, κi1, κ
i
2,Cc(Xj)l(Xj)

)
, xij

)
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To put things simple the optimization parameter Xj from the classic bundle
adjustment equation now became Cc(Xj) meaning we no longer try to optimize
each single world point but the position and orientation of each three by three
checkerboard grid as a whole.

4.5 Weighted Bundle Adjustment

Let us consider checkerboards facing a camera at a rather high angle as seen in
figure 9. We assume that our corner detection gets less accurate as this angle

Fig. 9: A steep detected checkerboard.

gets bigger. The minimization equation should therefore weigh deviations less
for boards not directly facing the camera. Each world point Xj gets assigned a
weight by the function w depending on the angle the checkerboard it belongs to
has to the currently considered camera orientation Ri.

With · being the dot product and Cc(Xj) being the checkerboard’s pose Xj

belongs to (see chapter 4.4) w is defined as:

w(Ri,Xj) = Ri

0
0
1

 ·Cc(Xj)


0
0
1
0


This simply calculates the cosine between the checkerboard’s normal and the

camera’s viewing direction. It is one for perfectly facing markers and approaches
zero as they turn away from the camera. The minimization term becomes:

min
fi,xi

0,y
i
0,R

i,ti,κi
1,κ

i
2,Xj

∑
i,j

w2(Ri,Xj) d
2(π,xij)

Reprojections are allowed to differ more from the detections if the checker-
board they belong to is seen tilted. This gives us a mixed set of grids per camera
where some must be more accurately reconstructed and some are given more
slack.
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5 Results

To solve the minimization equations the Ceres Solver library version 1.8.0 was
used in the program. Besides testing on real camera images the algorithm also
was run on a rendered set of images where the camera matrices were known in
order to optimize the parameters and get a sense of accuracy. The figures on the
last few pages show mean values and standard deviations for internal camera
parameters in various test scenarios. The following abbreviations are used in the
graphs:

– start: The input to the bundle adjustment. This is the starting point for
the optimization.

– simple: Simple, classic bundle adjustment without any improvements (see
the beginning of chapter 4).

– simple with pp: Simple bundle adjustment but with added principal point
prior (see chapter 4.1). All the other upcoming methods have this prior as
well.

– energy: Checkerboard corner energy as used in the detector as distance
measure (see chapter 4.2).

– covariance: Bivariate gaussian distribution according to the checkerboard’s
orientation as covariance for a mahalanobis distance measure (see chapter
4.3).

– parameterized: Optimize a whole checkerboard pattern instead of single
corner detections (see chapter 4.4).

– weighted: Weight the squared euclidean distance of the reprojection ac-
cording to the checkerboard’s orientation (chapter 4.5).

The first experiment (figure 10) is a set of rendered images. We know all the
internal and external camera parameters and can evaluate the different methods
based on that. The only downside to this is that there is generally no noise or
distortion (no lenses, sensor noise or lighting difficulties) interfering with the
checkerboard corner detections so all the benefits of the here proposed methods
don’t give as much of a performance boost as they do in real scenes. The input
is so good that the simple approach already performs quite well.

This changes for the next set of images (figure 11). Here a Canon 450D
with a 50mm f1.6 fixed focal length lense was used. Because of that we would
expect low variance in said focal length but especially for low apertures and
varying distances to the objects in focus the ground truth actually cannot be
zero variance. Real images are prone to slightly off corner detections and thus
our proposed methods clearly outperform the classical approach.

To test the bundle adjustment variations for cameras with differing focal
lengths figure 12 shows a set of images again taken with a Canon 450D but this
time a 18-55mm f3.5-5.6 lense was used. The first four images were shot with
less zoom than the last four. Although images five to eight result in roughly
the same focal length as the experiment before there is much higher variance.
Parameterized seems to be the exception but taking a closer look shows that it
simply eludes focal variation by yielding higher px variance. This could be due
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to dim lighting and therefore worse corner detections. But again one can’t really
tell how much variance really is in the ground truth.

Figure 13 shows the results for an image set taken with the rather cheap
camera module of the Nexus 5 smartphone. There’s no hardware zoom so a fixed
focal length is to be expected except for focussing due to different distances to
the objects. Similar to the previous experiment parameterized shows less variance
in focal length but higher variance in the principal point. With the weight for
the principal point prior from chapter 4.1 one can adjust this trade off between
centering the principal point and varying the other parameters although it is not
clear which side to prefer.

The cheap smartphone camera was tested in better lighting in the next exper-
iment (figure 14). The results show less variance in the focal length but slightly
higher variance in the principal point. The overall higher focal mean could very
well be true since the aperture changes from the dim scene to this well lit envi-
ronment.

Our reprojection function π also models radial distortion with distortion
coefficients κ1 and κ2. All of the implemented methods optimize this as well.
In order to test how well these estimates are we took the rendered images and
radially distorted them. Figure 15 and 16 show that the bigger the coefficients
get the worse the general optimization becomes.

One final evaluation we can only really take with rendered images is the
calculation of the cameras’ orientations and positions. A little over 100 image
sets were generated. For each of them the calibration bodies were randomly posi-
tioned and rotated while all cameras were kept fixed. This way we calculated the
mean deviations and variances of focal lengths, principal points, camera posi-
tions and camera rotations over all of these sets (see figure 17). Again the results
have to be taken with a grain of salt since these are noiseless and undistorted
rendered images but by far the most accurate method seems to be the parame-
terized variant of chapter 4.4. Since we can’t really do this type of experiment
on real images because we simply can’t accurately measure the positions of the
optical centers we have to rely on this conclusion. Real images generally suffer
from more corner detection noise.

6 Summary and Outlook

The idea behind the proposed methods generally is to loosen the constraints
and provide varying error distributions across the image for example depending
on the checkerboard’s orientation or basically trying to deal with slightly off
detections. This was done exploiting certain properties of the calibration body.
For rendered test images the checkerboard detection is already so robust that this
is not necessarily needed and simple bundle adjustment already performs well.
But that means evaluating the different approaches is not that easy. In scenarios
where we know the ground truth the different methods don’t really play out
their full potential and for real camera images we have no way of knowing how
close we are to the real values because of depth of field, hardware production
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errors or camera firmware doing various post processing like bad radial distortion
correction. We can only say that we are in the right ballpark but especially for
real cameras it is not clear whether low variance in focal length really is the better
result since even when keeping the zoom fixed aperture changes and refocussing
influences the focal length. All in all the parameterized method seems to be the
most robust one also looking at the astonishing positioning results of figure 17.

Improvements can still be done for finding correct color code correspondences.
Light turquoise for example easily gets mixed up with deep blue when in the
shade. It is best to have the calibration body in a well lit surrounding with
uncolored and clear lights. A single wrong checkerboard correspondence ruins
the whole bundle adjustment procedure. Currently the colors’ hue values are
compared for possible matches. Maybe some sort of auto white balancing or even
different ways of uniquely marking a checkerboard face could make calibration
in real world scenes even more robust.

Follow-up experiments can be done testing combinations of the different
methods. One could for example use the parameterized grid approach in con-
junction with the energy distance measure. Another different approach in the
triangulation step could be to implement the point correspondence improvement
by Chum et al [8]. There points lying on a common plane are refined before doing
the triangulation so that their reconstruction also lies on a plane. This could be
done for every checkerboard face in order to start off with a better initial world.

In summary the presented camera calibration method using the custom cal-
ibration body gives robust results with the most critical part being point corre-
spondences due to difficulties in matching the color codes in bad lighting. The
biggest advantage is the intuitive procedure with only one image per camera and
simultaneous calculation of internal and external camera parameters.
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f ( variance) px ( variance ) py ( variance )
start 1123.81 ( 2867.21 ) 509.34 ( 249.32 ) 380.72 ( 91.76 )
simple 1121.10 ( 1.86 ) 511.43 ( 1.54 ) 381.84 ( 3.02 )
simple with pp 1120.76 ( 0.36 ) 511.00 ( 0.00 ) 383.00 ( 0.00 )
energy 1120.25 ( 0.96 ) 511.42 ( 0.15 ) 383.49 ( 0.06 )
covariance 1120.52 ( 0.76 ) 511.12 ( 0.17 ) 382.98 ( 0.06 )
parameterized 1120.82 ( 0.38 ) 511.00 ( 0.00 ) 383.00 ( 0.00 )
weighted 1120.67 ( 1.04 ) 511.07 ( 0.07 ) 382.99 ( 0.04 )

Fig. 10: Rendered scene results with known focal length of 1120. For these synthetic
images the simple bundle adjustment with added principal point constraint performs
best. Generally speaking the other proposed methods try to make room for outliers due
to slightly off checkerboard detections. Clear and noiseless input images don’t really
benefit from that.
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f ( variance ) px ( variance ) py ( variance )
start 2769.31 ( 102182.37 ) 505.92 ( 202.89 ) 344.95 ( 673.33 )
simple 2500.60 ( 626.64 ) 519.22 ( 2954.71 ) 304.44 ( 2104.94 )
simple with pp 2467.40 ( 39.49 ) 511.00 ( 0.00 ) 340.00 ( 0.00 )
energy 2466.58 ( 40.63 ) 511.51 ( 0.03 ) 341.00 ( 0.01 )
covariance 2467.28 ( 38.67 ) 511.05 ( 0.03 ) 340.00 ( 0.01 )
parameterized 2472.82 ( 27.66 ) 511.00 ( 0.00 ) 340.00 ( 0.00 )
weighted 2465.71 ( 50.68 ) 511.02 ( 0.01 ) 340.00 ( 0.00 )

Fig. 11: Images taken with a Canon 450D, 50mm f1.6. Variations in the focal length are
to be expected due to the lens focussing differently from image to image especially for
low apertures. The results show that this set of images mostly gains from the principal
point constraint.



Fully automatic calibration of multiple cameras 23

01.png to 04.png f ( variance ) px ( variance ) py ( variance )
start 1692.16 ( 2463.85 ) 497.05 ( 299.39 ) 340.88 ( 2.7 )
simple 1555.5 ( 64.8 ) 511.4 ( 338.66 ) 348.56 ( 54.38 )
simple with pp 1579.77 ( 120.62 ) 511.0 ( 0.0 ) 340.0 ( 0.0 )
energy 1576.42 ( 97.47 ) 510.81 ( 0.88 ) 341.32 ( 1.37 )
covariance 1577.81 ( 97.53 ) 510.35 ( 0.69 ) 340.36 ( 1.63 )
parameterized 1581.35 ( 35.6 ) 506.53 ( 10.18 ) 344.13 ( 8.13 )
weighted 1577.44 ( 101.4 ) 510.69 ( 0.13 ) 340.07 ( 0.11 )

05.png to 08.png f ( variance ) px ( variance ) py ( variance )
start 2516.93 ( 28095.72 ) 501.52 ( 133.46 ) 347.5 ( 394.58 )
simple 2282.12 ( 1298.68 ) 487.66 ( 860.21 ) 379.16 ( 281.41 )
simple with pp 2283.85 ( 550.79 ) 511.0 ( 0.0 ) 340.0 ( 0.0 )
energy 2283.11 ( 455.77 ) 510.82 ( 0.32 ) 340.92 ( 0.34 )
covariance 2283.98 ( 458.87 ) 510.36 ( 0.27 ) 339.92 ( 0.31 )
parameterized 2281.09 ( 47.58 ) 508.02 ( 10.45 ) 341.55 ( 0.81 )
weighted 2287.29 ( 756.19 ) 510.82 ( 0.05 ) 340.0 ( 0.03 )

Fig. 12: Images taken with a Canon 450D, 18-55mm f3.5-5.6. Images 01.png to 04.png
were taken with less zoom than 05.png to 08.png. The results table is divided into
these two groups. Again it is hard to say whether lower variance really means better
calibration since hardware dependent bigger focal length means less depth of field and
causes refocussing from image to image.
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f ( variance ) px ( variance ) py ( variance )
start 909.54 ( 6832.49 ) 509.24 ( 44.64 ) 381.26 ( 28.83 )
simple 917.32 ( 3948.56 ) 516.80 ( 279.31 ) 353.76 ( 56.63 )
simple with pp 892.21 ( 78.95 ) 511.00 ( 0.00 ) 383.00 ( 0.00 )
energy 894.18 ( 72.45 ) 511.48 ( 1.76 ) 383.37 ( 0.95 )
covariance 895.83 ( 58.29 ) 511.05 ( 1.60 ) 382.85 ( 0.89 )
parameterized 894.11 ( 16.23 ) 510.80 ( 5.37 ) 383.87 ( 0.94 )
weighted 897.66 ( 69.55 ) 511.04 ( 0.29 ) 382.94 ( 0.51 )

Fig. 13: Images taken with a Nexus 5 smartphone. In order to improve contrast in this
low lighting setting the flash was turned on and all automatic image improvements like
high dynamic range mode were disabled where possible.
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f ( variance ) px ( variance ) py ( variance )
start 918.17 ( 439.88 ) 506.35 ( 30.95 ) 390.24 ( 18.41 )
simple 896.70 ( 9.44 ) 510.86 ( 19.95 ) 389.87 ( 9.49 )
simple with pp 917.09 ( 13.89 ) 511.00 ( 0.00 ) 383.00 ( 0.00 )
energy 917.47 ( 3.39 ) 511.57 ( 4.07 ) 383.45 ( 0.89 )
covariance 917.82 ( 3.45 ) 511.08 ( 4.02 ) 382.96 ( 0.88 )
parameterized 910.55 ( 37.84 ) 511.00 ( 0.00 ) 383.00 ( 0.00 )
weighted 925.97 ( 3.04 ) 511.03 ( 2.18 ) 383.01 ( 0.42 )

Fig. 14: Images taken with a Nexus 5 smartphone with better lighting than the set be-
fore. From the results table it seems that the different methods are a trade-off between
lower principal point variance and lower focal length variance. Of course by tweaking
the weight of the principal point constraint one can drastically effect this behaviour
but without ground truth data there’s no way of knowing the best parameter settings
for that.
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f ( variance ) px ( variance ) py ( variance )
start 1114.61 ( 1238.10 ) 508.73 ( 244.82 ) 378.34 ( 556.29 )
simple 1120.08 ( 5.71 ) 510.89 ( 31.30 ) 383.82 ( 6.86 )
simple with pp 1117.92 ( 2.29 ) 511.00 ( 0.00 ) 383.00 ( 0.00 )
covariance 1117.98 ( 1.89 ) 511.02 ( 0.12 ) 383.06 ( 0.20 )
energy 1117.52 ( 1.82 ) 511.42 ( 0.10 ) 383.53 ( 0.17 )
parameterized 1119.59 ( 1.33 ) 511.00 ( 0.00 ) 383.00 ( 0.00 )
weighted 1115.22 ( 6.82 ) 510.91 ( 0.29 ) 382.99 ( 0.06 )

κ1 ( variance ) κ2 ( variance )
start 0.000e+00 ( 0.000e+00 ) 0.000e+00 ( 0.000e+00 )
simple -1.043e-04 ( 8.206e-11 ) 1.746e-08 ( 3.208e-16 )

simple with pp -9.213e-05 ( 4.094e-12 ) -3.605e-10 ( 1.128e-20 )
energy -9.185e-05 ( 3.520e-12 ) -3.748e-10 ( 1.375e-20 )

covariance -9.199e-05 ( 3.893e-12 ) -3.595e-10 ( 1.338e-20 )
parameterized -9.507e-05 ( 2.310e-12 ) 9.044e-10 ( 1.232e-18 )

weighted -8.760e-05 ( 8.840e-12 ) -4.208e-10 ( 1.848e-21 )

Fig. 15: Rendered scene (same as figure 10) radially distorted with κ1 = −1 · 10−4

and κ2 = −1 · 10−8. The results now start to show similar behaviour to the real image
sets, which is slight variance in the principal point and focal length. Radial distortion
indeed is another big influence especially with the rather few checkerboard corners we
work with.
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f ( variance ) px ( variance ) py ( variance )
start 1204.19 ( 15486.64 ) 505.65 ( 160.16 ) 380.66 ( 26.39 )
simple 1075.54 ( 3157.46 ) 459.56 ( 12065.15 ) 360.91 ( 2717.09 )
simple with pp 1089.25 ( 146.49 ) 511.00 ( 0.00 ) 383.00 ( 0.00 )
energy 1090.07 ( 109.31 ) 512.23 ( 11.84 ) 383.37 ( 8.09 )
covariance 1090.12 ( 106.91 ) 511.62 ( 12.10 ) 383.10 ( 9.17 )
parameterized 1095.80 ( 69.71 ) 511.00 ( 0.00 ) 383.00 ( 0.00 )
weighted 1065.10 ( 423.04 ) 511.46 ( 10.93 ) 383.11 ( 5.74 )

κ1 ( variance ) κ2 ( variance )
start 0.000e+00 ( 0.000e+00 ) 0.000e+00 ( 0.000e+00 )
simple -3.032e-04 ( 6.271e-08 ) 6.024e-08 ( 8.167e-14 )

simple with pp -3.209e-04 ( 4.339e-10 ) -7.090e-11 ( 1.445e-18 )
energy -3.180e-04 ( 2.816e-10 ) -2.195e-10 ( 1.265e-18 )

covariance -3.195e-04 ( 3.513e-10 ) -1.507e-10 ( 1.378e-18 )
parameterized -3.386e-04 ( 2.504e-10 ) 1.582e-08 ( 1.113e-16 )

weighted -2.894e-04 ( 1.726e-10 ) -9.565e-10 ( 1.987e-19 )

Fig. 16: Rendered scene (same as figure 10) radially distorted with κ1 = −5 · 10−4

and κ2 = −1 · 10−8. Where the distorted images were rather well calibrated in the
set before, this is where it starts to get messy. k1 is a little too low and variances get
bigger.
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Camera 1 Camera 2 Camera 3 Camera 4 · · · Camera
10

set 1 · · ·

set 2 · · ·

set 3 · · ·

set 4 · · ·

...
...

...
...

...
...

...

mean errors f pp in pixels position in mm normal in degrees
start 37.1 ( 3.12e+03 ) 15.7 ( 181 ) 30.7 ( 1e+03 ) 0.0334 ( 0.00125 )
simple 3.86 ( 39.1 ) 5.04 ( 125 ) 7.14 ( 52.9 ) 0.00501 ( 7.89e-05 )
simple with pp 1.2 ( 1.92 ) 1.36 ( 0.156 ) 6.92 ( 52.4 ) 0.00248 ( 7.63e-06 )
energy 1.15 ( 2.06 ) 0.833 ( 0.182 ) 6.91 ( 50.6 ) 0.00225 ( 7.88e-06 )
covariance 1.19 ( 1.92 ) 1.36 ( 0.153 ) 6.95 ( 53.7 ) 0.00248 ( 7.64e-06 )
parameterized 0.985 ( 0.843 ) 1.41 ( 6.93e-07 ) 0.527 ( 0.161 ) 0.00246 ( 7.59e-06 )
weighted 1.45 ( 3.78 ) 1.39 ( 0.0484 ) 7.34 ( 40 ) 0.00253 ( 7.61e-06 )

Fig. 17: In this experiment the calibration methods were tested on over 100 image sets
where the calibration objects were randomly repositioned for each set with fixed cam-
eras. The table shows the mean errors and variances of the calibration. The principal
point error was calculated using the squared distance to the true value and is taken
in pixels. This also is the first time evaluating estimated camara positions since for
renderings the ground truth is known. It is assumed that the calibration body has a
leg length of 14.4cm. The world coordinate system is scaled to match these dimensions.


